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1. Introduction

Most of the work conducted under the aegis of the project has now been written up in
the form of papers submitted for publication. These are listed in Section 10 below. In
this report, a brief description of the work done will be given under a number of
headings, and fuller details are given in the papers, most of which are attached as
appendices. Against each head are given the numbers of the relevant papers in the
publication list. The same numbering system is used for the appendices.

2. Density Estimation (1,13]

One of the aims of the project was the extension of the existing density
estimation methodology in various directions. Among these was the use of density
estimation in techniques such as the smoothed bootstrap. A criterion has been
devcloped for deciding whether smoothing is worth performing in any particular
bootstrap situation. For full details, see [1]. One novel feature was the use of
Computer Algebra to solve this stadstical problem, and Professor Silverman gave an
extremely well received presentation on this aspect to a Royal Stadstical Society
workshop on Computer Algebra in Statistics.

In 1951, Fix and Hodg's wrote a technical report which contained prophetic work
on nonparametric discrimirant analysis and density estimation. The report introduced
several important concepts - the first time, and was never published. It is not just of
historical interest, but contains much material of contemporary relevance. A
commentary [13] has been written placing the paper in context and interpreting its
ideas in the light of more modern developments. The commentary has been submitted
for publicaton together with the paper itself.

3. Parsimonious additive models [5,10]

A very simple and powerful new method for fitting nonlinear regression models was
devised and investigated by Professor Silverman in collaboration with J.H. Friedman of
Stanford. The basic idea is to fit a sequence of segmented linear regressions on single
variables to the data and then to use a suitable stopping rule to decide when to stop
claborating the model. - Finally a backward elimination step is used to resimplify up to
an appropriate point. The paper [5] on this material was selected by the editors of
Technometrics to be the special discussion paper at the 1988 ASA meetings and will
shortly appear with discussion and rejoinder in that journal.

4. Solution of Statistical Integral Equations [6,8,11,15]

A considerable amount of work has been carried out on the general topic of the
solution of statistical integral equations. The main aim has been the development of a
general approach that can be applied to any problem where the model for the observed
data is obtained by applying a (known) compact linear operator A to the function f of
real interest. There are two cases of main interest, where the data arise as
observations of Af at known points subject to error ("regression dependence”) and
where the data are observations from a non-homogencous Poisson process with
intensity Af ("density dependence’.) ‘We have developed methodology for both of
these cases, as discussed separately below.
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Regression dependence )
Suppose the data .7 of the form ¥; = Af(;) + & where Af(¢) = IA(t.u)f(u)du and
the &; are uncorrelaed errors with mean zero. A natural estimate of f is given by
constrained penalised least squares, where one finds f to minimise
S(f) = lAf-YII* + aff™, subject to any relevant linear constraints on f, such as
positivity. In all the applications of interest, positivity is a constraint on f and in
some cases f is constrained in addition to integrate to 1. Particular practical problems
of interest arose from consultation with materials scientists. Another practical problem
considered in detail was e determination of the ventilation/perfusion distribution over
the human lung given data on inert gas eclimination (Evans & Wagner, J. Appl.
Physiol. 42, 889-898, 1977).

The approach adopted was to apply quadratic programming to a discretised
version of S(f), as follows: the function f was approximated by a vector of values f
on a grid; the vector Af(r;) of the values of Af at each of the values r; can then be
expressed by a simple quadrature rule as Kf, where K is a suitable matrix. The
roughness penalty [f2 is approximated by a quadratic form fIDf. One then
minimises (Y-KDT (Y-X) + af Df subject to f20 and any other relevant
constraints. The quadratic programming method used was that of Wolfe (
Econometrica 27, 382-398, 1959) which involves similar manipulations to the simplex
algorithm for linear programming. The use of Wolfe’s algorithm has the advantage
that the final simplex tableau gives zdditional information that is of use as explained
below. The broad conclusions of the work were as follows; some of these are treated
in detail in [15]. It is intended that one or two papers will be written based on this
work.

(a) The quadratic programming algorithm terminared in a reasonable number of steps
in all the applications and simulations tried. For any particular data set, the number
of pivots — and hence the time taken to find. the solution — is approximately constant
as the smoothing parameter & varies.

(b) The positivity constraint alone is not sufficient to provide a properly regularised
solution; some smoothing (i.e. @>0 ) is required in addition. This casts a little doubt
on some of the existing methodology in this field, in which one chooses a control
parameter to get a non-negative solution and then assumes implicitly that this solution
will be sufficiently smoothed. )

(c) By considering the special case (linear nonparametric regression) where the
minimisation of ||Y-Af(t)[| + aff"2 can be carried out explicitly, it appears that the
discretisation has a negligible effect, except where « is chosen inappropriately small,

(d) The final QP tableau makes it possible to draw approximate Bayesian posterior
confidence intervals for the curve f with only trivial additional computational effort.
This procedure has been implemented and investigated. One particular point of
interest is the frequentist behaviour of the Bayesian confidence intervals, which has
been considered (for example by Wahba) in the nonparametric regression case. In our
more general setting, it is clear that the choice of smoothing parameter is crucial to
this frequentist behaviour. Wahba has suggested that a smoothing parameter chosen
by generalised cross-validation will give Bayesian posterior int>rvals which are also
(pointwise) frequentist confidence intervals. In the case of ill-posed problems, our
work casts doubt on the generalisability of this claim, because in practice varying &
between quite wide limits produces curves which are completely different in
appearance but which fit the data almost equally well; the difference between the
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solutions lies in a space spanned by singular functions of A with extremely small
singular values. Yet while the goodness-of-fit to the data remains almost unchanged,
the width and frequentist coverage probabilities of the Bayesian intervals changes
dramatically. This general behaviour also shows that it is more appropriate to make
use of prior information rather than attempting to choose the smoothing parameter
automatically. One extremely useful aspect of the posterior intervals was in
demonstrating to a materials science client the effect of the ill-posed nature of his
particular problem. It was immediately clear that the detailed question he was asking
was not resolvable on the basis of the experiment conducted.

Density dependence

Suppose now that the function A is a non-negative function satisfying jA(t,u)dt:l
for all u and that the available data consist of independent observations Y; drawn from
the probability density Af. We might think of these observations as being "indirect”
observations from the density f of real interest, since in many of the practical
problems of this type, there is an unobservable sample X; drawn from f itself, and
each Y; is drawn from the density A(y,X;). Examples of this situation in practice
include the classical stereology problem of determining the particle-size distributions
from data collected on plane sections through a composite medium, and the problem in
image processing of reconstructing a section through the human body by means of
positron emission tomography. Vardi, Shepp and Kaufman (J. Amer. Safist. Assoc.
80, 8-37, 1985) describe this latter problem in detail and give an approach based on
the EM algorithm that aims towards a maximum likelihood estimate of f in any
problem of this kind. In the positron emission tomography problem they consider in
detail, the EM algorithm does not actually converge in a reasonable number of steps,
and so they propose stopping after a finite number of steps thereby obtaining a
smoother estimate of f than wounld be given by maximum likelihood, but one which
depends on the starting point of the iterations and which is not a limit point of any
iterative procedure.

We have developed a general approach in which a smoothing step is introduced
between each EM iteration. The smoothing part of each iteration involves very little
computational effort. A wide variety of linear and non-linear smoothers have been
tried and the conclusion is that best resuits are obtained by a simple local averaging
procedure; furthermore the effect of quite a small amount of smoothing is quite
dramatic. The effect of the discrete grey level nature of the images was also
considered and it was found that the best results are obtained by working in continuous
values for the level of the.images and only discretising at the display stage. On all our
empirical evidence, the smoothed EM procedure converges in a reasonable number of
iterations, and furthermore the limit point of the procedure does not depend on the
starting configuration. We have demonstrated heuristically that the smoothed EM
approach corresponds to a classical EM algorithm applied to a penalised maximum
likelihood problem, where the likelihood is penalised by a term depending
quadratically on the square root of the function of interest. The paper (6] dealing with
the specific application to the classical stereology problem is already in press; a more
general discussion, and several particular points concerning th= positron emission
tomography problem, is given in the paper [11).

It is also possible to apply the smoothed EM approach to problems of the
regression dependence kind. Some comparisons have been made in [15] between this
approach and the quadratic programming method for one-dimensional problems. The
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general conclusion is that the results obtained are very similar, and the quadratic -

programming method has the advantage of providing approximate posterior confidence
intervals at negligible cost. For problems in which f is a funcdon on a higher
dimensional space, the quadratic programming approach could not be applied, because
the computational cost of each iteration depends quadratically on the number of pixels
or bins, and the number of pivots required is bounded below by the number of bins in
which the solution is non-zero.

5. Availability of information in indirect observation problems [9,12]

In any indirect observation problem, it is of interest to ask how much information is
. actually available in 2 sample of given size, as compared to an experiment in which
"direct” observations are available from the density function being estimated. We have
concentrated on the positron emission tomography problem, but the general
methodology is applicable to any indirect estimation problem where the singular value
decomposition of the integral operator can be expressed explicitly, and also, as
explained in Section 6 of the paper, to a wider class of related problems.

Given a large sample {Y;} of indirect observations, we consider the size of the
equivalent sampie {X;)} of observations, whose original exact positions would allow
equally accurate estimation of the image of interest. Both for indirect and for direct
observations, we. establish exact minimax rates of convergence of estimation, for all

possible estimators, over suitable smoothness classes of functions. For indirect data .

and (in practice unobservable) direct data in a two-dimensional version of the PET
problem, the rates for mean integrated square error are n~?/°*2 and (nflogn)=P/(P*+D
respectively, for densities in a class corresponding to bounded square-integrable pth
derivatives. We obtain numerical values for equivalent sample sizes for minimax linear
estimators using a slightly modified error criterion.

One of the technical tools used in the paper is an orthogonal series approach
" based on the singular value decomposition of tbe integral operator. Although this
originally arose for theoretical reasons, it is shown in [9] that it yields estimates that
are in a sense rate-optimal. Although this estimator can only be constucted in the
special case where the SVD is explicitly available, its calculation in this case can be
carried out quickly, and so it was of interest to explore its practical behaviour. In [12]
an investigation of this kind was conducted. The method has the advantages of speed
and of independence of any pixellation; it has the disadvantages of ignoring the
positivity constraint and of making rapid changes in value more difficult to achieve
than the EMS algorithm. Nevertheless it is clear that the method is certainly useful as
a "quick and dirty" approach in those cases where the SVD is tractable.

6. Edge process models [2,4]

One of the ingredients of recent methodology in statistical image restoration is the idea
of introducing a system of "edges” between pixels in the image. See, for example,
Geman and Geman ([EEE Trans. PAMI-6, 721-741, 1984). If an edge is present
between two contiguous pixels then they are not considered as neighbours in the
restoration procedure. The use of such a process is likely to be of value in restoring
images which consist of a number of regions within each of which the value varies
smoothly. In penalized maximum likelihood estimation of the image, the number and
configuration of the edges is controlled by a penalty term; in model-based restoration
using Markov random fields there is an analogous penalty term in the energy function
of the Gibbs distribution for the edge process. We have investigated how some
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geometrical insights can be used to provide penalties for the various edge
configurations in a way that is roughly independent of the pixel discretisation. The
penalties we obtained are conmsistent over pixels of different sizes, shapes and
orientations, even if these occur in the same pattern; pixel grids consisting of pixels of
different sizes are a key eclement in the work on positron emission tomography
discussed in [11]. The cases of square, rectangular, hexagonal and irregular pixels are
considered.

7. Nonparametric Discriminant Analysis

A great deal of work has been carried out on the Classification and Regression Tree
(CART) approach t0 nonparametric discriminant analysis. This has not yet been
written up in the form of papers, but will first appear in detail in P.C. Taylor’s. (1989)
PhD thesis.

We have designed and implemented an entirely novel method of displaying the
classification tree making use of sophisticated colour graphics. This method produces
"block tree diagrams" which have great practical value in explaining what the
procedure is doing, and methodological value in pointing out ways in which the
current al'gorithm is working well and badly. Another area of attention has been
alternative splitting criteria with particular reference to the problems raised when there
is a large number of classes to be considered. In addition to the Gini criterion and the
twoing procedure suggested by Breiman et al, we have investigated five new suggested
splitting criteria some (but not all!) of which appear to have great promise. The next
main contribution has been in looking at adaptive "anti end-cut factors” which work to
prevent the introduction of large numbers of splits that remove very small parts of the
data. Such factors need to depend adaptively on such things as the number of cases at
the current node and the number of species represented, and these ideas have been
incorporated into the procedures.

Further refinements have been made to the display program for presenting the
successive splits carried out by CART on a colour display. In particular ideas for
dealing with categorical variables have been included in the package. The algonthm
itself has been enhanced to include a sirrogate splits option, which aliows the program
to cope with missing values in the predictor variables. Surrogate splits can also be
used to rank the importance of each predictor variable in terms of their discriminatory
usefulness. Ongoing activity is in two main areas. The first is aimed at reducing the
amount of pruning required to create a classification tee. The second is an attempt to
detect hierarchies in the class structure. For example, when discriminaiing betwcen
different types of vehicle, we may hope that macked and wheeled vehicles could be
distinguished near the root of the tree.

8. Image Refinement (3,14]

A consequence of the use of a statistical model for a true scene is the possibility of
producing restored images on a finer pixel grid than that on which the signal is
originally collected. This fact, pointed out by Jennison in the discussion of Besag's
paper (J. Royal Statist. Soc., 48, 288-289), has formed the basis of a very promising
avenue of research. There are immediate potential applications in LANDSAT imaging
and other forms of aerial photography where, because of the large pixel size, the
proportion of "mixed” pixels can be disturbingly high; a proper subdivision of such
pixels into regions of more than one type should improve classification rates
considerably. More generally, methods which do not impose the unrealistic -
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assumption that a scene is uniform within cach pixel offer a possibility of more
accurate restoration in ail image probiems.

Work in this area has been carried out with the assistance of M. Jubb, whose
(1989) PhD Thesis will contain a full account of progress thus far. It became apparent
at an early stage of our work that there would be insuperable computational problems
associated with pixel subdivision beyond a 2x2 refinement. However. the limiting
case in which arbitrary boundaries are allowed within each pixel was found to be quite
tractable. Our initial work was to implement a method for computing an
approximation to the solution of this limiting case problem in which straight line edges
were allowed within each pixel. This procedure was found to be very effective in the
presence of low levels of additive noise; details and examples appear in [3].

Further work has tackled the same problem in the presence of greater noise
levels. An important technique for producing starting values which can then be
updated iteratively by the edge fitting algorithm is signal aggregation: by adding
together signals from groups of pixels a signal on a coarser pixel grid but with greater
signal to noise ration is obtained. A cascade algorithm, in which a series of
restorations are obtained at successively lower levels of signal aggregation has been
developed. This has been found to produce good restorations for very noisy data
which existing methods fail to handle at all well. Details of this aigorithm are given
in [14].

Our research in this area is still continuing. In particular, we are considering the
additonal problems associated with grey-level data and true images which contain
objects separated by sharp boundaries but also with smooth changes in colour within
an object.

9. Markov random fieid algorithms for image restoration {7]

The iterated conditional modes (ICM) approach of Besag and the annealing
approach of Geman and Geman have been investigated. A suite of programs and
algorithms implementing these approaches to image analysis was written in order to
give a basis for experimentation and improvement. A large simulation study was then
carried out on some aspects of these approaches. Qne particular aspect of interest has
been the investigation of the approprate choice of interaction parameter(s) in the
Markov random field model as used in the prior for the images. A theoretical
argument dernonstrates that an appealing procedure is to weight diagonal neighbours of
each pixel by 27% the amount used to weight direct neighbours. Such a scheme should
produce reconstructions that are are largely unaffscted by the wa¥in which the pixel
grid is placed on the true underlying image. The broad conclusions of the simulanon
study were that worthwhile gains can be achieved using an ‘optimal’ value of of
Besag’s parameter S rather than the portmanteau value 1.5. and that in the absence of
specific prior knowledge about the corrupted scene a second order neighbourhood
mode! with down-weighted diagonals should be used, for example the one suggested
by the theoretical arguments referred to above. For full details see [7].
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The bootstrap: To smooth or not to smooth?

By B. W. SILVERMAN
Schuol of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK.

AND G. A, YOUNG
Statistical Laboratory, University of Cambridge, Cambridge CB2 1SB, U.K.

SUMMARY

The bootstrap and smoothed bootstrap are considered as alternative methods of
estimating properties of unknown distributions such as the sampling error of parameter
estimates. Criteria are developed for determining whether it is advantageous to use the
smoothed bootstrap rather than the standard bootstrap. Key steps in the argument leading
to these criteria include the study of the estimation of linear functionals of distnbutions
and the approximation of general functionals by linear functionals. Consideration of an
example, the estimation of the standard error in the variance-stabilized sample correlation
coefficient, elucidates previously-published simulation results and also illustrates the use
of computer algebraic manipulation as a useful technique in asymptotic statistics. Finally,
the various approximations used are vindicated by a simulation study.

Some key words: Bootstrap; Computer algebra; Density estimation; Kernel; Resampling; Smoothed bootstrap.

1. INTRODUCTION
1-1. The standard bootstrap

The bootstrap is an appealing nonparametric approach to the assessment of errors and
related g aatities in statistical estimation. The method is described and explored in detail
by Efron ('979, 1982). A typical context in which the bootstrap is used is in assessing
the samplit.z mean squared error a(F) of an estimate 8(X,,....X,) of a parameter
8( F) based on a sample X,,..., X, drawn from an unknown distribution F. [f F were
known, a might be most easily estimated by repeatedly simulating samples from F. The
standard bootstrap technique is to estimate a( F) by the sampling method, but with the
samples being drawn not from F itseif but from the empirical distribution function F,
of the observed data X,,. .., X,. A sample from F, is generated by successively selecting
uniformly with replacement from {X,,..., X,} to construct a bootstrap sample
{XT,.... X*}. For each bootstrap sample, the estimate é(XT, ..oy XE) of the quantity
8(F,) is calculated. Since arbitrarily large numbers of bootstrap samples can be construc-
ted, a( F,) can easily be estimated to any reasonable required accuracy from the simula-
tions, The quantity a( F,) is chen used as an estimate of a(F).

The bootstrap method thus consists of two main elements, which are often confused.
There is first the idea of estimating a functional a(F) by its empirical version a(F,),
and secondly the observation that a(F,) can in very many contexts be constructed by
repeated resampling from the observed data. The resampling idea is an extremely
important one, but it has, perhaps, been overstressed at the expense of the underlyving
estimation step. Once the two steps are conceptually separated it becomes easier to gain




>

14

470 B. W. SiLVERMAN AND G. A. YOUNG

a fuller understanding of how the bootstrap actually works. In particular it becomes clear
that there is nothing special about estimating functionals a(F) that are themselves
sampling properties of parameter estimates; the bootstrap idea can be applied to any
functional a(F) of interest.

1-2. The smoothed bootstrap

Because the empirical distribution F, is a discrete distribution, samples constructed
from F, in the bootstrap simulations will have some rather peculiar properties. All the
values taken by the members of the bootstrap samples will be drawn from the original
sample values, and nearly every sample will contain repeated values. The smoothed
bootstrap (Efron, 1979) is a modification to the bootstrap procedure to avoid samples
with these properties. The essential idea of the smoothed bootstrap is to perform the
repeated sampling not from F, itself, but from a smoothed version F of F,. Two possible
versions of the smoothed bootstrap will be described in more detail below; whatever
method of smoothing is used, the net effect of using the smoothed bootstrap is to estimate
the functional a( F) by a(F).

The main aim of this paper is to investigate some properties of the smoothed bootstrap,
in order to give some insight into circumstances when the smoothed bootstrap will give
better results than the standard bootstrap. As an important by-product, the value of
computer algebraic manipulation as a tool in asymptotic statistics will be demonstrated.

Efron (1982) considered the application of the bootstrap, and various other techniques,
to the estimation of the standard error of the variance-stabilized transformed correlation
coefficient. He illustrated by direct simulation that in a particular case a suitable smoothed
bootstrap gave better estimates of standard error than the standard bootstrap. We shall
discuss Efron’s example later in the present paper and demonstrate how his results can
be elucidated and extended by using a suitable approximation argument.

Before going on to discuss the estimation of general functionals a( F), we shall first
consider the estimation of functionals a that are linear in F. For such functionals we
shall obtain simple sufficient conditions under which using the smoothed bootstrap can
decrease the mean squared error in the estimation of a( F).

We close this section by giving details of the two kinds of smoothed bootstrap considered
in later discussion. Suppose X,...., X, is a set of r-dimensional observations drawn
from some r-variate density f and that V is the variance matrix of f, or a consistent
estimator of this variance matrix, such as the sample variance matrix of the data. Choose
a kernel function K such that K is a symmetric probability density function of an r-variate
distribution with unit variance matrix, for example the standard unit r-variate normal
density.

Define the kernel estimate f.,,lx) of fix) by

flay=IVita R S KR VX=X, (1D

1
and the shrunk kernel estimate /‘}._J.r) by
Foxr=(1= A VAL = h ix) (12
Density estimates in general are discussed, for example, by Silverman (1986). The
smoothing parameter h determines the amount by which the data are smoothed to provide

estimates. Estimates of the form (1-2) have the property that the density f,, has the same
variance structure as the original data, if V is taken to be the sample variance matrix.
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Given any functional a(F) of an r-variate distribution F, the unshrunk smoothed
bootstrap estim‘atc of a(F) js deﬁngd to be a(F,) and the shrunk smoothed bootstrap
estimate is a(F,,), where F, and F,, are the distribution functions corresponding to
f,, and f‘,,,, respectively. [t is easy to simulate either from f, or from f,, by sampling with
replacement from the original data and perturbing each sampled point appropriately;
for details see Efron (1979) or Silverman (1986, § 6.4). Hence values of a( F,) and a(F, )
can be obtained in practice by simulation if necessary.

2. LINEAR FUNCTIONALS

In this section we consider the estimation of a linear functional A(F). Because A is
linear, standard calculus demonstrates the existence of a function a(t) such that

A(F) =J a(t) dF(t).
The standard bootstrap estimate AO(F) will satisfy
Ao(F)=A(Fn)=J a(t)dF,()=n""Y a(X,).

i=1

The unshrunk smoothed bootstrap estimate /i..( F) will satisfy
A F) =J a(tfutt) dt,

and the shrunk smoothed bootstrap estimate A,,,,( F) will satisfy
&AF)=J‘ a(tif () dr,

with f, and f,, as defined in (1-1) and (1-2) above.

In the discussion that follows we assume that the function a has continuous derivatives
of all orders required. All unspecified integrals are taken over the whole of r-dimensional
space. Assume that V is fixed and define the differential operator D, by

Dwu=Y Y V,'aliax ox,.
t=] =1
Our first theorem gives a criterion for smoothing, without shrinkage, to be of potential
value in the bootstrap estimation process.

THEOREM 1. Suppose atX) and D.a(X) are negatively correlated. Then the mean
squared error of A,( F) can be reduced below that of A, F) by choosing a suitable h > 0.

Proof. Assume without loss of generality that A(F)=0. by replacing a(t) by
atty—[ a(x)flx) dx if necessary. By this assumption,
vSE { Ay F)} = E{A, F)) =var (A, F )} ~[E A, FIIT. (21

Now, by some easy manipulations, 4,(F)=n"'Y w(X,), sav, where the sum is over
i=1,..., n, and where

=1

wl.\‘l=J atOh IR Vi =t dr= | KiElatx~hVie) dg (2-2)
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on making the substitution r=x+ Avie A Taylor expansion gives

a(x+hVig) = a(x)+ h(VIE){a(x)) +1h*(VAE) T Hu(x)(V}E) + O(hY),
where H,(x); =9%a(x)/dx, ax;. By our assumptions on the kernel K it follows that

w(x)=a(x)+1h*Dya(x)+ O(h"), (2:3)
E{fih(F)}=E{W(X)}=§h2JI(X)Dva(x) dx+ O(h', (2-4)
since | a(x)f(x) dx =0. Also, since X,, ..., X, are independent,

n var {A,(F)} = var {w({X)} =f a(x)*f(x) dx+h* J’ a(x)Dva(x)f(x) dx+ O(h*)
' ) (2:5)

using (2-3). Combining (2-4) and (2-5) gives the mean squared error
MSE {A,(F)}=n""' J‘ a(x)*f(x) dx+n"h:J a(x)Dva(x)f(x) dx+ O(h*). (2-6)

For fixed n, the equation (2-6) demonstrates that, under the assumption that a(X) and
Dva(X) are negatively correlated, the mean squared error of A,(F) will, at least for

—

small h, be smaller than that of Aq(F), compieting the proof of the theorem. -

The next theorem gives the corresponding criterion for smoothing with shrinkage to
lead to more accurate bootstrap estimation. Define a*(X) by

a*(X})=Dya(X)-X.Va(X).

THEOREM 2. Suppose a( X ) and a*(X) are negatively correlated. Then the mean squared
error of A, ;(F) can be reduced below that of A, ,(F) = Ao F) by choosing a suitable h > 0.

Proof. As before assume without loss of generality that A(F) = 0. We have by similar
manipulations to those used above, A, (F)=n"'S w*(X,), where

W) = (1+hH)Y J' atOh VKRV x =1+ D) dr

= f a{l(1+ A Hx+hVIENK(¢) dg,

on making the substitution t = (x+hV'£)/(1+ h*)}. Now, for h small, (1+a3)H=1-1h*,
SQ

w*(x)aj a(x+hVig-in' 1K (¢) de

A Taylor expansion of a about x, and our assumptions on the kernel K give
w*(x)=al(x)+ih*a*(x)+ O(h*). {2:7)

Now we have

E{A,(F)}= E{w*(X)}=%h:J‘f(x)a"(x) dx + Q(h",
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and, on using (2-7),

nvar {A,,(F)} =J a(x)*f(x) dx+h3J. a(x)a*(x)f(x) dx+ O(h*).

—

The proof of Theorem 2 is completed in the same way as that of Theorem 1. [

As a simple illustration, consider the estimation of the sixth moment | x®f(x) dx of a
univariate density. It is not immediately clear whether smoothing is worthwhile in this
case. In the notatior used above, a(x)=x°®, Dya(x) =30 Vx* and a*(x) =30 Vx*-6x°.
It follows that, setting &, = EX",

cov{a(X),a"(X)}= -6, +30 Viu,g+6us—30 Vitapss .

If, for example, X has a normal distribution with mean zero and variance V, we have
uy = V/27(2j)Y/j! and hence cov {a(X), a*(X)} =-34020V* <0,

Thus a shrunk-smoothed estimate | x*f, ,(x) dx will always, for a suitabiy chosen value
of h, give a more accurate estimate of E(X°®) than will the raw sixth moment if X is
drawn from a normal distribution. Similar calculations for other distributions show that
the same conclusion holds under a wide variety of distributional assumptions for X.

The results obtained by applying the criteria can sometimes be a little surprising.
Suppose X is drawn from a standard normal distribution. Application of the criterion
for estimation by unshrunk smoothing demonstrates that, for small h, this will have a
deleterious effect in the estimation of either E(X*) or E(X?) alone. However, for the
linear combination of moments E(X*~ cX?), unshrunk smoothing will be worth perform-
ing provided ¢ > 6. Details of this somewhat counter-intuitive result are left to the reader
to reconstruct.

We do not, in this paper, devote much attention to the question of how much smoothing
should be applied in cases where smoothing is worth performing; that problem is left
for future work. However, the last example of this section demonstrates that the question
of how much to smooth can be a rather delicate one. In this example, let ¢, denote the
density of the normal distribution with mean zero and variance o°. Let

A (F) = j o (1) dF(1),

and suppose that the quantity ¢ converges to zero as the sample size increases. Assume

that F has a smooth density f with derivatives of all orders required. Consider the

estimation of A,(F) by the unshrunk smoothed estimator A, (F), constructed using the

normal density as the kernel. We shall investigate the optimal large-sample behaviour of

the smoothing parameter h. Assume throughout that 4 is small for large n and that £(0) > 0.
Setting 8°=h*+ ¢* and performing some simple manipulations, we have

A(F)=J' Gl ) dt ="' T 50 X,).
Hence, substituting u = t5 and performing a Taylor serizs expansion,
E{A,(F)}= f o 0)f(1) dt = f dlu)flud) du = f(0)+18°F(0)+ O(5).
Since, by a similar argument,

A F) =J S () f(1) dt = f(0Y+1e 0V + Ot ™),
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it foilows that
E{A(F)} = A (F) =1hf"(0)+ O(8").
By standard arguments
var {A,(F)} = n~" var {¢s(X)} = n"'f(0)/(28mh){1 + O(5)}.
Thus the mean squared error of A,(F) will be, asymptotically, given by
MsE {A,(F)}=n""f(0)/(26m]) +{h*f"(0)? = n™'f(0)/(28m!) +{(8° - £7)*f(OF,

where the terms neglected are of order n~' +§°. This approximate mean squared error
is a convex function of 5, and its minimizer will satisfy 8°(8°-¢”)=C(f)n"', where
C(f) =f(0)/{27f"(0)*}, or, in terms of h and ¢,

(1+h*/ e/ e*=C(NHin"'e™" (2-8)
Denote by &(R) the rcot in [0, 20) of the equation
(1+e))¥y?=R;

then by simple calcutus ¢(R) ~ RYas R+ 0,and ¢(R)~ R"*as R - . The asymptotically
optimal h for the estimation of A, will satisfy, from (2-8),

hop = eW{C(Hin""e 7).

If n7'e >0 then Aoy~ eC()' e = C(N*n~""

Standard density estimation theory (Parzen, 1962) shows that this is the asymptoticaily
optimal smecthing parameter for the estimation of the density at zero. Thus, in this case,
the best estimate of A, will be based on the best estimate of the density.

Unfortunately this will by no means always be the case. If n7's7* > 0, we will have

Aope~ eC(Ninte ™ = C(Hnte 2

and if n7'e * » a, where 0 < a <2, hyo ~ e¥{aC(N)}.

In neither of these cases will it be optimal to construct an optimal estimate of f in
order to estimate A,(f), since the optimal choice of h will be smaller, in_ order of
magnitude in the first case, than that required for the estimation of f itself. Thus the
optimal estimate of A,( F) will be based on an undersmoothed estimate of the underlying
density. This example is, of course, rather artificial, but it does illustrate the likely difficuity
of obtaining general rules for deciding how much to smooth when estimating functionals
of a density. Even in cases where smoothing is advantageous, the amount of smoothing
required may be quite different from that needed for the estimation of the density itself.

3. MORE GENERAL FUNCTIONALS
3-1. Linear approximation
In this section, the work of § 2 is extended, by considering local linear approximations,
to more general functionals of an unknown distribution. When an explicit bootstrap
method is being used the functional being estimated is unlikely to be linear, and so a
more general theory is necessary. Locai linear approximations to functionals of distribu-
tions have also been used by Hinkiey & Wei 11984) and Withers (1983).
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Consider the estimation of a functional a( F,,) of an unkr.own distribution £, underlying
a set of sample data. Suppose that « admits a linear von Mises expansion about F, given
by

ai F)=a(F,)+ A(F - F,), 13:1)

where the linear functional A is representable as an integral
A(F—Fn)=J‘a(l)d(F—Fo)(H. (3-2)

A detailed discussion of ditferentiation of functionals and general von Mises approxima-
tion is given by Fernholz (1983). The precise accuracy of the expansion (3-1) depends
on the detailed properties of a, but the error will in general be of order sup|F — F,[*.

" The expansion (3-1) gives.an obvious approximation to the bootstrap estimate of a( F,).
If F is an estimate of F,, then we will in general have, provided sup|F — F,| is O,(n %),

a(E)=a(Fy)+A(F) = A(F,)+ O,(n™"),

and so the sampling properties of a( £) will be approximately the same as those of A(F).
The criteria of § 2 can then be applied to the linear functional A. If using an appropriate
smoothed bootstrap will improve the estimation of A(F,) then, neglecting any errors
inherent in the linear approximation (3-1), the smoothed bootstrap will be worth using
in the estimation of a{ F,).

3-2. The transformed sample correlation coefficient

In this section we consider application of the linear approximation procedure to
estimation of the sampling standard deviation of the variance-stabilized sample correlation
coefficient. Suppose F, is a bivariate distribution with mean zero and correlation coefficient
p, and let { =tanh™' p. Let r be the computed samptle correlation coefficient based on a
sample of n independent observations trom F,, and let z =tanh™' r be the sample estimate
of . Then the functional of interest is a4 Fy) = {var (z)}{, Efron (1982) devoted consider-
able attention to the estimation of a,( F,) by a variety of methods. including the smoothed
bootstrap, for the specific case of F, bivariate normal, with marginals of unit variance
and p =3, and for sample size n = 14,

A key step in our investigation of the estimation of «,(F,) will be an approximate
formula, given by Kendall & Stuart (1977, p. 251). Let

: w1 7 !
a(E,)=[—”—,,{"—;+-(i§2+“—‘;‘+ a2 )_( Fa Mo )H .33
(L=p)" lpiy 4\l H5 HioMo: Mo MyHor
where u, is the (i, j)th moment given by wu, = [ xix4 dF,ix). Here and subsequently in
this section unsubscripted letters x will denote vectors (x,, x,). Kendall & Stuart give

a,(Fy)=n"talF)+0(n 7,

0 that estimation of a,( F,) is approximately equivalent to that of a{ F,).

Consider now the calculation of the function a(r) defined in (3-2). For fixed ¢ let 3,
be the distribution function of a point mass at 1 and, for any ¢ >0 let F, be the improper
distribution F,+ ¢d,. Then simple calculus combining (3-1) and 3-2) gives

atty={(d/derat F.)], ... C3-d)
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Our functional a(F) is defined for improper distributions, as well as for probability
distribution functions, and hence there is no need when calculating a(¢) to cossider the
more complicated perturbation £(8, — F;) to F, used by Hinkley & Wei (1984). The actual
algebraic manipulations required in the caicuiation of a(¢) from (3-4) and (3-3) are
extremely laborious. However, it is relatively easy to write a program in a computer
algebraic symbolic manipulation language, such as MACSYMaA, to perform the necessary
differentiations and substitutions. The function a(¢) itself is a fourth-order polynomiali
in , and t» whose coefficients depend on the moments of F,. It is only used as an
intermediate step, in the special cases considered below, in the calculation of the criteria
derived from Theorems i and 2, and the calculation of these criteria was also performed
by computer aigebra. Further details of the manipulations are available from the authors.

To complete this section we consider the results of the application of the computer
algebraic manipulation procedure to the functional (3-3) for two special cases. Further
details of the results discussed will be given in § 3-3 below. Let Asg( F,) be the criterion
obtained from Theorem 2 for the shrunk smoothed bootstrap 10 be advantageous in the
estimation of the functional A(F,). Recall that Agg( F,) <0 means that some smoothing
at least is worthwhile.

Suppose, first, that the distribution of the data can be reduced by an affine transforma-
tion to a radially symmetric distribution F*. Without loss of generality it can be assumed
that Ft has unit marginal variances. Let R be the radial component of Ft, and denote
by s; the jth central moment of R°. Computer aigebra shows that the criterion Asg( Fp)
reduces, in Jis case, to

Asal Fy)Bo™ = ={355+ (4= 35350+ 53+ 253+ 245, + 16}/32, (33)
where 3, is the positive quantity la( F,)~'. Using the standard inequality 53 < 5.5, , we have
32455 F))B5 2 35, —dsisi = 3sisY i+ s+ 251+ 245, + 16

=3(si—1sd 7= 251/3)7 + 153 +685./3+ 16 = 16.

This gives the general conclusion that Agg( F,) < —13; for any distribution F, which can
be affinely transformed to radial symmetry.

Another class of distributions for which Aggt F,) is guaranteed not to be positive is
the class for which a particular affine transformation of F, to unit variance-covariance
matrix yields a distribution with independent marginals. Let X be a random vector with
distribution F,, and let o} = var ( X,), o3 = var ( X;) and p = corr { X,, X.). Define a matrix

S by
o 071 »}
S= . .
5 2L T

here the power : denotes the symmetric positive-definite square root. Define a bivariate
distribution F* by F*(u)= F,(Su) for all 2-vectors u. A random vector Y = S™'X with
distribution F* and unit variance-covariance matrix can be obtained by first rescaling
the marginals of X to have unit variance and then rescaling the principal components
of the resulting vector to have unit variances. If this natural affine transform of F, has
independent marginals, then an argument given in §3-3 below demonstrates that
Asgl Fy) <0, with equality only if X has a uniform discrete distribution giving probability
1 to each of four points.
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In summary, we have derived the following conclusion. Provided al! the approximations
we have made are reasonabie, using a shrunk smoothed bootstrap, with an appropriate
smoothing parameter, will give improved estimation of a,.(F,) over that obtained by the
standard bootstrap, if either F, is an affine transformation of a radially symmetric
distribution or F; is an affine transformation, of a particular kind, of a distribution with
independent marginals, and F; is not a uniform four-point discrete distribution. In
practice the underlying distribution F; will not be known. An obvious topic for future
investigation is the construction of empirical versions of the criteria of Theorems 1 and
2, on the basis of which a decision whether or not to smooth can be made for each data
set encountered. Some preliminary simuiations along these lines have been encouraging.

3-3. Some technical details

Throughout this section, define the matrix S as in (3-6), and suppose that X is a
random vector with distribution F,. Let Y=5"'X as in §3-2, and let F*(y)= Fy(Sy)
be the distribution of Y. It is easily seen that the existence of an affine transformation
reducing F, to radial symmetry is equivalent to the radial symmetry of the particular
affine transformation F*.

Define as(u)=a(Su) and let k, = E(Y)Y%), where Y=5"'X. In both of the two
special cases considered in § 3-2, k;=k;, =0, and computer algebraic manipulation
showed that as(u) reduces to the simpie form

as(u) = {uiuj — kp(ui+u3)} Bo.

The criterion given in Theorem 2 also reduces to a simple form when expressed in
terms of as. We have, by standard calcuius, '

a'X)=Dwa(X)-X.Va(X)=VadY)-Y.Vag(Y)=as*(Y), e

say, where a%(u) = {2(1 + kay)(ui + u3) — dkys — duiui}B,.
Since, by definition, a( X ) =as(Y), it follows that
Aggl Fp) =cov {alX), a*( X))} =covias(Y) a%{Y)}
= E{as( Y)+ Boka:tat(Y) (37
since it is immediate that E{as( Y)} = =Bok-a.

Suppose, now, that the distribution of Y is radially symmetric, so that Y =
(R cos @, R sin ©) with © uniformly distributed on (0, 27). The form (3-7) for Aggl Fy)
can be expressed in terms of even moments of Y up to order 8, and each of these moments
can be expressed in terms of the moments of R°. For example

ki = E{R*sin” ® cos’ @) = E(R*/8) =(s.+4)/8,
where, as in § 3-2, 5, = E(R*-2) is the jth central moment of R*; the assumption that
E(Y})=E(Y3) =1 implies that R* has mean 2. Performing all these substitutions, by
computer algebra, yields the form (3:5) for Asg(F,) and hence the conclusion given in
§ 3-2 for distributions that can be transformed to radial symmetry.

Now suppose that Y, and Y. are independent, but that Y is not necessarily radially
symmetric. It will then be the case that k,.= E(Y1)E(Y3) =1 and hence

a(u) = —4Byuiui—ui —ui+ 1) = —4{as(u)+ Bo}.
It follows that Asa( F,) = —4 var {as(»)}. Since Y, and Y, are independent, the only way

var {as(y)} can be zero is for Y to have the four point distribution giving probability ;
to each of the points (1, £1); otherwise as{ Y) has positive variance, and Agy( F,) <0.
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4. SIMULATION STUDY

The discussion in § 3 above involved heavy dependence on two approximations, one
of them specific to the example under consideration and the other a key feature of our
proposed general methodology. In this section, we investigate both of these approxima-
tions by a simulation study which extends the one carried out by Efron (1982, Table
5.2). All our simulations are carried out under the assumptions of Efron’s model, that
F, is the bivariate normal distribution with unit marginal variances and correlation 3.
Efron considered only samples of size 14, though we consider here larger sample sizes
as well. We follow Efron in using the values 0 and i for the smoothing parameter h.

For each sample size n, the accuracy of the bootstrap and smoothed bootstrap estimates
of the sampling standard deviation a, ( Fy) of the variance-stabilized correlation coefficient
was assessed in three different ways. First, a direct simulation of the boatstrap procedure
itself was carried out; two hundred data sets were generated from F, and for each one
a.(F,) was estimated by the usual resampling procedure, using two hundred resampied
data sets of size n in each case. The true value of «,(F;) is known and so it is possible
to estimate the root mean squared error of the direct bootstrap procedures from our
simulations. The results thus obtained are labelled ‘direct’ in Table 1.

Table 1. Estimates of root mean squared errors of bootstrap estimates of sampling standard
deviations of variance-stabilized and untransformed correlation coefficients; sample sizes n
and smoothing parameters h.

Variance-stabilized Untransformed

n h Drrect Linear Deita Direct Linear Deilta
4 0 0-07s 0-071 0-077 0-070 0-076 0-060
H 0-045 0-046 0-057 0-057 0-055 0-052

20 0 0-049 0-050 0-053 0-046 0-053 0-044
i} 0-033 0-032 0-037 0-045 0-039 0-041

30 0 0-029 0-033 0-033 0-033 0-036 0-030
i 0-019 0-021 0-022 0-027 0-026 0-027

40 0 0-024 0-025 0-025 0-024 0-027 0-027
' B 0-015 0-016 0-017 0-021 0-019 0-020

50 0 0-020 0-020 0-021 0-020 0-021 0-019
i 0-013 0-013 0-014 0-019 0:015 0-018

100 0 0011 0-010 0-010 0-010 0-011 0-010
i 0-008 0-006 0-007 0-009 0-008 0-008

Secondly, in order to investigate the accuracy of our linear approximation /i.,‘,( F),
some analytic calculations were carried out, making use of computer algebra. By this
means, the behaviour of the approximation can be studied without recourse to any
simulation. For the bivariate normal population under consideration, the standard devi-
ation of A, ,(F,) was found to be n™'(1+ h")™*. This quantity is referred to as the "linear’
estimate of the root mean squared error of the bootstrap procedure. Closeness of the
‘linear’ and ‘direct’ estimates of root mean squared error would vindicate our proposed
procedure of studying the sampling properties of the bootstrap by means of linear
approximations.

Our development of the linear approximation involved the intermediate ‘step of
approximating a.(F,) by n~‘a(F,), as given in (3-3). This intermediate approximation
raises the possibility of studying the sampling properties of the smoothed bootstrap by




The bootstrap: To smooth or not to smooth? 479

considering those of the approxi@ation (3-3), with F, replaced by f’,,_‘. This corresponds
to substituting the moments of F,,, which are easily calculated from the sample, into
(3-3). By analogy with § 6.5 of Efron (1982), we refer to this procedure as the nonpara-
metric deita approximation to the smoothed bootstrap. For each of two hundred simulated
samples from F, this approximation was caiculated. From the values thus obtained, a
third estimate of the root mean squared error of the smoothed bootstrap procedure was
found. This is labelled "delta’ in Table 1.

The analogous investigation was carried out for the untransformed correlation
coefficient r, in the context of the same bivariate normal model. The factor (1 -p") ™" is
omitted from (3-3) in this case; otherwise the same algebraic manipulations and simula-
tions were performed as for the variance-stabilized coefficient z. The ‘linear’ estimate of
the root mean squared error is now 3n~'(1+ h*)~3(2+2h° + h*)}. The resuits are presented
in the last three columns of Table 1.

The broad conclusions to be drawn from Table 1 are the same for both correlation
coefficients. Even for the small sample size considered by Efron (1982), our linear
approximation procedure gives good estimates of the accuracy of the tuli bootstrap
procedure, and the relative improvement due to smoothing is well predicted. Efron’s
conclusions could have been obtained without recourse to any simulation. On the whole
the delta procedure, which itself involves some sirhulation, gives slightly inferior estimates
of the bootstrap’s accuracy.

It is known (Davison, Hinkley & Schechtman, 1986) that the variance-stabilized
correlation coefficient is highiy correlated with its linear approximation, but the untrans-
formed correlation coefficient is in general not. The suspicion expressed by a referee that
this may have a deieterious effect on our approximations in the untransformed case does
not appear to have been borne out by the simulation study, except that the beneficial
effects of smoothing the bootstrap were systematically slightly exaggerated by the linear
method in this case.
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STATISTICAL IMAGE RESTORATION AND REFINEMENT
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School of Mathematical Sciences

University of Bath, BATH BA2 7AY, UK.

SUMMARY

We consider the problem of reconstructing an image from a noisy record. We
describe existing methods due to Geman and Geman (1984) and Besag (1986) which use
a Markov random field model for the gue scene but assume that each pixel consists of a
single colour. In order 1o improve the quality of the restoraton at the boundary of
regions of different colours we extend these methods to allow pixels to contain two
regions of colour separated by a single straight line. An algorithm for performing the
reconstruction is presented and illustrated by an example.

INTRODUCTION

We consider a rectangular region partitioned into pixels labelled 1.,2,....n. Each
pixel is coloured black or white and the colour of pixel i is denoted by x, which takes
the value O for white and 1 for black. The x, are unobserved. We work instead from the
observed record y; which consists of x, plus added notse. We denote the whole scene by
x = {x; i=1,..., n} and the set of records by » = {y: i=l,....,n}. The noise
distribution will be assumed to be known but if this were not the case, it could be
established by studying training data.

Recent developments in statistical restoration methods use a Bayesian approach.
The maximum a posteriori (MAP) estimate of the true scene is the value of x which
maximises P{x|v), the conditional probabilitv of x given the record v. By Baves’
theorem

Px|y) == l(¥]x) plx), )

where [(v}x) is the conditional likelihood of the observed record. v. given the true
colouring, x, and p(x) is the prior probavnility of .
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We assume the conditional density function f(y;lx;) to be known and for the
remainder of this paper we shall assume that the records, y; are independenty
distributed as Gaussian with mean x; and variance ¢*. Thus,

(1) = TS0l = @2r0Y) ?expl o (3i=)?).

=1 - i=1

To obtain a valid formula for p(x), we assume that the true scene corresponds to a
locally dependent Markov random field (MRF) with respect to a specified neighbourhood
system, that is, the conditional distribudon of pixel i given the colourings of all other
pixels’ depends only on the neighbours of pixel . We shall use a second order
neighbourhood system in which pixels are considered to be neighbours if they are
horizontally, vertically or diagonally adjacent to each other. A detailed definition and
further examples of Markov random tields may be found in Besag (1974).

The form of p(x) is determined by the nature of the Markov random field. In our

. case, we have

plx) o< e-BZ(x)‘

where Z(x) is the number of discrepant pairs in the scene, x, i.e. the number of pairs of
neighbours which are of opposite colour, and B is a fixed positive constant (normally
chosen to be between G.5 and 1.5).

The maximisation of P(x|y) now corresponds to the minimisation of

L

(vi=x)" + BZix) : (2)
20- |

e, it

over values of x = [x;;i=1,....n}.

This expression may be regarded as a penalty, the first term penalising any
difference between the record and the fitted value, the second term penalising excessive
roughness in the reconstruction. Clearly. with 2" possible values for x this is a
computationaliy large problem and necessitates the use of a sophisticated algorithm.

Geman and Geman (1984) use the method of simulated annealing which attempts to
find the MAP estimate of x given the record v. Their method is compuwationally
extravagant and more recent developments by Greig, Porteous and Seheult (1986) show
that the MAP estimate of any two colour scene may be found exacdy using the Ford-
Fulkerson labeiling algorithm for maximi-ing flow through a network.

Besag (1986) proposed the computationally simpler method of iterated conditional
modes (ICM) which updates each pixel in trn, choosing for it the most likely colour
based on its record and the current colouring of its neighbours. In updating pixel i the
new x, is chosen to minimise the sum of terms involving x, in the penalty 12), i.e.
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where Z(x;) is the number of neighbours of pixel i in the current restoration wh'ch are
of the opposite colour to x;. The method proceeds by scanning the scene, successively
updating each pixel until convergence is reached. This will normmally occur at a local
rather than global maximum of P(x|y), but, given the possibility of undesirable long
range dependencies in the MRF model. this is not a serious drawback and might even be
an advantage.

SPLIT PIXELS

So far we have considered scenes in which each pixel is coloured wholly one
colour. We now allow pixels in the true scene to be coloured partly black and partly
white. Each record y; is distributed as Gaussian with vanance o and mean p;:, the
proportion of pixel i which is coloured black. The restoration methods that we have
previously discussed can be used for this problem by proceeding as if the pixels were
only of one colour but the quality of the restoration at the edges of objects or regions
will obviously be poor. Instead, we can allow pixels in the restored image to be
coloured partly black and partly white. The simplest form of this is to quarter each pixel
and allow it to be filled with the most likely of the 2* configurations. This method.
proposed by Jennison (1986) uses a modified version of ICM. firsdy iterating ar full
pixel size and subsequently restoring the quarters; in the second stage the same form of
MRF model is used for the subpixels as is originally used for full pixels This method
appears to work well and has prompted work into the further breakdown of pixels.

For further refinement we can either (i) consider an mxm breakdown of each pixel
or (ii) use continuous lines within the pixel to represent the edge. The implementation
of (1) requires the minimisation of

m n

n 1 m 3
5 Z(yi - ——{ Z 'rr,'k) + ?]32.

o° D) me =1 k= =1
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Z Z('tr/k)'
k=1

where the subscript ik refers to subpixel j.k within pixei i; x,, takes value 0 or 1 and
Z{x;;) is the number of subpixel neighbours of subpixel ijk in the current restoration
which are of the opposite colour 10 1, (the factor ¢ is needed as each discordant pair is
counted rwice). Note that subpixels at the edge of a pixel will have some subpixel
neighbours contained in an adjacent pixei. We can see that as m increases this
minimisation becomes computationally cumbersome. Also. it offers only an
approximation to (ii) and it turns out to be easier to pass to the limit and work directly
with continuous solutions.

The most basic torm of (it) allows a single swraight line edge within each pixel and
it is the implementation of this that we shall describe. [t is no longer meaning™l to talk
of discrepant pixel or subpixel pairs and we replace the second term of (2) by a multiple
of the total length of edge in the reconstruction x. Thus, the restored image is chosen to
minimise
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over images x made up of pixels x;, i=1,...,n, either of a single colour or divided into

wwo regions of different colours by a single swaight line; p;(x) denotes the proportion of
black in pixel i; L(x) is the total edge length in scene x and B’ is a fixed constant related
to the B used earlier.

An advantage of edge length as a measure is that the penalty is rotationally
invariant, i.e. remains constant throughout all rotations of the scene within the region.
This could not be obtained using discrepant pairs as a measure although it has been
shown by our colleague Robin Sibson that this variability can be minimised using a
down weighting of 1/V2 for the diagonal adjacencies.

THE RESTORATION ALGORITHM

The restoration is done in three stages, the first two of which have already been
described :

Stage 1 : ICM to convergence on full size pixel grid.
Stage 2 : ICM to convergence on 2x2 pixel grid.
Stage 3 : Updating process on the line segments representing the edges.

Stage 3 requires that we now regard the reconstruction as a series of line segments
separating the two colours. An initial representation is obtained in a straightforward way
from the end product of Stage 2. The updating process treats pixels in pairs, selecting
the best place for two edges 10 meet, given the current restoration of neighbouring
pixels.

As an example, consider the configuration at pixels { and ;j shown in Figure 1. The
distances a and b are determined by the current colouring of neighbouring pixels and
treated as constant for the moment. The distance W is chosen to minimise the
contribution from pixels { and j to the total penalty (3). i.e.

1 C )
gwW) = - > (v - Pkw)2 + Beyw + ew). (3]
20 k=t,/

where ey is the length of edge in pixel & when the join is at W and pyy is the
proportion of black in pixel & when the join is at W.

For the case shown in Figure I, this penalty is

1 N L N
gi(W) = ;F{(_v‘-a—il(W—a))‘+(yj—a-y(w-b))’}

BN (W=a) +N 1+ (W=h)1,
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Fig. 1. Updating the position of edges in pixels i and .

This can not be minimised directly but the form of

dg (W) /~q) -
———gI = ——1~ (:\V«v—d—:_\“-"b—-:)',) - B' (W-a) = — (W-b) =
dW 1o~ : N +(W=g )= NVi+( W—=h)

suggests an iterative approach. Given an approximate solution W,_; we solve

1 . (Wo=ay (W;=-b)
— QW +a=-2v «h=-2v + =+ =[ =0
Elon ’ VI+HW, _—a)y NIH(W_ =b)-
to obtain
4(52{3' [] - + b - +~ (Zy‘-aq-:y/_b)

NI+H(W_ -ay NI(W_ =b)-

W, =
2&.10':[3' ! =+ ! =

VIH(W,_ —a) N1+(W,_ -b)*

Starting from any sensible initial value, W, accuracy to 3 decimal places was
achieved after at most four iterations. In practice we take W}, to be the value of W prior
to this update.

Different forms of (4) are possible depending on which neighbours of pixels i/ and j
contain both colours, There are only four distinct cases that may arise and these are
shown in Figure 2.
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Fig. 2. Possible configurations of edges in two neighbouring pixels.

We have shown the method of solution for case (i) and cases (ii) - (iv) are solved
in a similar way. All other cases can be reduced t0 one of the above by means of
exchanging and/or invernting the pixels and their colours.

The most natural order of updating the edge pixels would seem to be to follow an
edge around, updating each join in turmn, completing circuits of the edge until
convergence. An alternative method is to update every &' join around the circuit,
therefore completing & laps betore each pixel has been updated once. Initial results
suggest that this provides additional stability in the updating process: we have found the
value k = 3 to give particularly good results.

AN EXAMPLE

We illustrate the methods we have described with an anificial example. Figure 3a
shows a true image and the superimposed pixel grid. The record from which a restored
image was constructed was obtained by generating a Gaussian random variable for each
pixel with mean equal to the proportion of the pixel coloured black in the oue image and
variance 0.01°. Figure 3b is the reconstruction after stage 1, in which the ICM method
with B=1 has been used, treating each pixel as either completely black or completely
white. Note that this is a rather poor approximation to the true image but it is the best
that can be done without dividing pixels. Subdividing each pixel into four in stage 2
produces the reconstruction in Figure 3c: the amounts of black ir each full pixel are now
much closer to the comesponding records and the divisions of split pixels match up well
with the true image. Proceeding to stage 3, we found that using P'=50 gave better
results than those obtained using lower values of B’. The final reconstruction ts shown
in Figure 3d. Despite the coarseness of the original pixel grid and the addition of noise
to the record, this reconstruction is barely distinguishable from the true image.
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Fig 3a True image
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Fig 3c Reconstructon after stage 2 Fig 3d Final reconstruction
FURTHER EXTENSIONS
(a) Consider a pixel which has true colouring as shown in Figure 4. Clearly the

straight line approximation to this edge will be poor and could have an adverse etfect on
the reconstruction of neighbouring pixels and pixels further alor g the edge. This may be
overcome using a more intricate restoration method. 2.2 allowing two straight lines
meeting at some point within a pixel.




~

-
A
’

Fig. 4. A pixel containing a boundary
that can not be approximated well
by a single straight line.

tb) The method presented in this paper can be exiended to scenes containing more
than two different colours. Where any two regions meet we can adjust the algorithm to
provide a continuous line join. More computation is required to find the best colouring
for a pixel in which three or more regions meet.
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Abstract

One of the ingredients of recent methodology in statistical image restoration is the
idea of introducing a system of "edges” between pixels in the image. If an edge is
present between two contigueus pixels then they are not considered as neighbours in
the restoration procedure. In penalized maximum likelihood estimation of the image,
the number and configuration of the edges is controlled by a penalty term; in model-
based restoration using random fields there is an analogous penalty term in the energy
function of the Gibbs distribution for the edge process. In this paper we show how
some geometrical insights can be used to provide penaities for the various edge
configurations in a way that is roughly independent of the pixel discretisation. The
penalties obtained are consistent over pixels of different sizes, shapes and orientations,
even if these occur in the same pattern. The cases of <quare, rectangular, hexagonal
and irregular pixels are considered.
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I. INTRODUCTION

Geman and Geman [2] discussed a methodology for pixel image restoration
which depended on the idea of modelling the true image by a Markov random field.
A key feature of their approach was the possible placing of "edge elements” at “line
sites” between pixels of the image. Although the idea of introducing an edge process
was introduced in the Markov random fieid context, its applicability is by no means
confined to model-based methods of image restoration and it is important that the
construction of the process should be given careful consideration.

The edge process idea corresponds to the notion that the image is segmented into
regions over each of which its behaviour is relatively homogeneous, or at least is not
subject to abrupt changes; from one region to another, however, large differences in
behaviour are possible. The changes in behaviour may relate either to overall grey
level or colour, or to more subtle properties such as texture. Of course, the basic
motivation for this kind of segmentation of the image is that the true scene is itself
segmented into regions, and the edge process in the model is an attempt to
approximate boundaries that are present in the true scene. For example, in the context
of remote sensing of a rural area, the boundaries would correspond to topographic
features like rivers and field boundaries. Our aim in this paper is to investigate the
consequences of thinking of the edge process as being a discretised version of an
underlying “true” pattern of boundaries. In particular we are interested in the
calcuiation of quantitative summaries of the discretised edge process that have genuine
meaning in terms of properities of the underlying boundary pattemn, for example the
total boundary length and the complexity of the pattern of regions defined by the
boundaries.

In Geman and Geman's approach, a prior distribution for the true image is
constructed by first constructing a prior Gibbs distribution for the process of edge
elements and then specifying the prior for the pixels themselves conditional on the
edge process. In the specification of the pixel process, contiguous pixels separated by
a line site at which an edge element is actually present are not considered as
neighbours, and so are allowed to have quite different grey levels without incurring
any penalty in the prior likelihood.

An alternative approach in which an edge process is equally important is
penalised maximum likelihood; for background reading see, for example, {4]. In the
image analysis context, the image is considered as a high-dimensional unknown
parameter, and a penalised log likelihood is constructed by subtracting from the log
likelihood of the image given the observed data a penalty term based on the
"dirtyness” of the image. The idea of penalised likelihood is that there are two
conflicting aims in image restoration; one is to obtain a faithful fit to the data, as
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measured by the likelihood, while the other is to obtain a "clean” image, corresponding
to a low value of the penalty.. For reasons we shall discuss in Section 2 below, a
convenient penalty to use is the energy function of the prior Gibbs distribution for the
image as considered as a realisation from a random prior process. In that case the
method of maximum a posteriori estimation as proposed in [2] yields exactly the same
restored image as the penalised maximum likelihood approach, even though the
philosophy behind the two approaches is different.

In this paper we shall focus attention on the specification of a suitable penalty for
the edge process. We shall show how various geometrical insights suggest how such a
penalty should be constructed. Our discussion will suggest relative costs for possible
configurations somewhat different from those proposed by Geman and Geman [2]. In
addition our scheme will provide methods for dealing with rectangular, hexagonal and
irregular pixel patterns. ]

For any given penalty function the Gibbs distribution with energy equal to the
pénalty defines a stochastic model for the edge process. However, we stress that our
interest is in developing the penalty for use in image restoration algorithms, rather than
in studying the theory of stochastic models for the edge process. Apart from our
intended application to image restoration, the problem of estimating the underlying
edge length for a discretized image is of interest in its own right; see, for example,
Dorst and Smeulders {1].

. LocALLy BASED PENALTY FUNCTIONS

The Gibbs distribution approach constructs a prior likelihood for the edge process
by first defining a set of cliques of line sites. Each clique C consists of a small set of
sites; in the Geman and Geman paper the cliques are the collections of four line sites
with a common vertex. The Gibbs model then gives as the prior probability of any
configuration @

z(w) = Z lexp({~-U(w)}
where Z is a constant and the energy function U satisfies

Uw)= ¥ V(o).
cliques C

Each V- is a function which depends only on rthose elements of w that correspond to
sites in the clique C. Each clique consists of a set of sites all of which are
"neighbours” of one another in some suitable sense, and hence the energy function
U(w) can be constructed by looking at cliques individually; looking ahead to the
prospect of large scale parallel processing, this localisation property is likely to be of
exreme importance in the future.
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In practical applications the observed record often consists of the true image
observed indirectly and subject to the addition of random noise. Maximum a
posteriori likelihood estimation of the underiying true image is achieved by
maximizing over possible images the likelihood of the observed record given a true
image multiplied by the prior probability of that image. Equivalently, one maximizes
the sum of the log prior likelihood —U(w) and the log likelihood of the record given
the true image @.

The philosophical approach we shall follow is to consider U(w) not directly as a
prior negative log likelihood, but rather as a penaity function for a given configuration
o. The penalty function is subtracted from the log likelihood of the record given the
true image to give a penalised log likelihood, maximisation of which corresponds to
maximum a posteriori estimation in the Bayesian model. Compare the spline
smoothing approach to nonparametric regression where the penalty term f g”% can be
considered either as a direct "roughness penalty” or as a term in a prior log likelihood;
for bibliography on spline smoothing, see, for example, Silverman [5]. As already
mentioned above, the use of a "locally computable” penalty like U(w) has enormous
potential advantages in an array processing computer environment, and it is on such
penalties that we shall concentrate in this paper.

It is implicitly assumed in the usual restoration methods that each pixel of the
true image consists of a single grey level and edges of regions or objects lie along
pixel boundaries. It is more realistic to assume the existence of a real image in the
plane not necessarily related to any pixel grid; the so called "true” pixei image is then
a discretization of the real image. We shall assume in addition that the real image is
made up of a number of regions divided by boundaries and that the edge process in
the "true” pixel image is constructed to approximate the real boundaries as closely as
possible. Our approach is to attempt to specify the form of the function V- in such a
way that the penalty associated with a pixel edge process in the "oue" pixel image
will, as far as possible, not depend on the way the pixels are constructed or placed on
the real image; instead the value of the penalty U(w) will give a cost based at least
approximately on the real underlying boundary pattern. Particular concerns will be to
eliminate, as far as possible, the effect of the position and orientation of a square
lartice; to discuss how to modify the penalty if the lattice is refined; and to devise
appropriate penalties for irregular pixel patterns. The penalty we shall use will have as
one ingredient an estimate of the total boundary length in the underlying "real” image,
and so has relevance to the problem discussed in [1].




IOI. SQUARE LATTICES

Let us tum first to the case of the square lattice, considered by Geman and
Geman [2). Suppose that the gauge of the lattice is &, and that each clique consists of
the four line-sites meeting at a particular vertex. The possible configurations and the
costs ascribed to these configurations by Geman and Geman (2] are shown in Figure
3.1

0 o0 oD OO O ) f
o5 oo oo oo oo oo
|
r
|

(no lines) (ending) (turn)  (continuadon) (branch) (crossing) |
Type 0 1 2 3 4 5
Cost O 2.7 1.8 0.9 1.8 27

Figure 3.1: Possible types of configuration for regular edge process, |
and the costs ascribed to them by Geman and Geman (2].

Note that the low cost of a continuation relative to the cost of an ending, branch
or crossing is intended to favour a small number of long straight edges over complex,
meandering edge systems. However, we shall see that this fails to provide an adequate
treatment of long straight edges at orientations away from the horizontal and vertical.
We shall write v; for the cost of a configuration of type i, and explore the
consequences of various choices of v;.

A. Boundary Length Considerations

Consider, now, the cost of a very simple pattern, consisting of an infinitely long
straight line placed at angle 8 to one of the edge directions of the lattice; without loss

of generality 0 £ 9 < 1:- The discretization will replace the line by a stepped pattern

of the form shown in Figure 3.2.

Figure 3.2: A line boundary and its discretzation.
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Because 6 < %, vertical segments will always be separated by one or more horizontal

segments. Over a long distance L in the x-directon, the number n, of horizontal
scgments will be asymptoticaly Lh~!, and the number n, of vertical segments
asymptotically Lx~'tan 6. The number of configurations of type 2 will be 22, and the
number of type 3 will be n, — n,. Thus the total cost will be

ZII,VZ + (nx - ny)v.s = Lh-l(\l3 + (2V2 - v3) tan 9}.

The total length of underlying boundary is L sec 8, and so the cost c(8) per unit length
of underlying boundary is, for large L,

c(8) = k™ {v; cos 8 + (2v, ~ v4) sin 8). 3.1

The ideal situation would be for ¢(8) to be independent of 8, but (3.1) makes it clear

that this is impossible. Define a = v,/v;. A nawral index of how far ¢(8) falls short

of ideal is given by the ratio

I(@) = max c¢(8)/ min, c(8).
058<x/4 0s9sxf4

/ <x/

This ratio depends only on a. If @ 2 1, ¢(8) is monotonically increasing in [0%]
and so /(a) = c(%)/c(O) =av2. If @<}, c(8) is monotonically decreasing in

[0.%], and /(@) = c(0)/c(%) = 1/(a¥2). To deal with }<a< 1, define
8 = tan~'(2a - 1) and rewrite
c(8) = h~ vy sec Gy {cos 6y cos 8 + sin G, sin )

= h~'vy sec By cos(8 ~ 6y). (3.2)
Since for } < @ <1 we have 0 < gy < %, it follows that, for a.in this range, ¢(8)

has a maximum at 8, and that /(a) = max{sec 8y, sec (% — 6y)}). Hence I(a) is

minimized by setting 8, = %

The minimum value sec% = (4 - 2V2)1"2 = 1.082. Thus it follows that the

minimax score /(a) is optimized by setting 2a - | = tan %

=1+ tan-’gi) = 1/N2. If this value of @ is used, then lines parallel to the lattice

which implies that

directions or those at 45° to these directions will cost the same amount per unit length,
while the most expensive lines will be those at 224° to the axis directions, which will
cost about 8% more. It is interesting to note that the Geman and Geman value
a =2 yields [{(a) = 2¥2 = 2.83, a much larger value.
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It can also be shown. by somewhat tedious algebra, that @ = 1/¥2 also minimizes
other criteria of variability of c(8), for example the coefficient of variation of c(4)

with 9 uniformly distributed over [0.{-].

The arguments of this section make it possible to settle on a charge for
configuradons of types 2 and 3. Suppose it is intended to penalize boundaries in the
underlying picture by an amount 8 per unit length. In an ideal world we would like to
choose v, and vy in (3.1) to ensure that c(8) = 8 for all 8. As we have seen, this
cannot be attained exactly for all 6, but sewing vp/v; = 22 will minimize the
" variability of c(8) as ¢ varies. Having settled the ratio v, /vy, it is natural to choose v;
to ensure that (2¢)"! | 02‘c<e)de = A. By simple algebra, from (3.2),

@) ["c(8)de = 4z~ljo‘/‘h-‘v, sec () cos (6 - T)do
= 8r !4 lvy wan (‘785) =vha k!

where the constant k = %/tan (%) = 0.948.

It follows that setting v; = kBk and v; = 2-Y2k8h will ensure that, while c(8)/ 8
is only exactly 1 for certain values of 8, it will be the case that c(8)/ B lies berween
0.948 and 1.027 for all @ and furthermore that the average value of c(8) over
(uniformly distributed) @ is precisely 8.

The above results are also relevant to the problem of estimating the underlying
edged length from a discrtized image as posed in {1]. Suppose a line of fixed length
placed at orientation & uniformly distributed over [0,2x] has N, tums and N,
continuations in its discretized form. Then 274khN, + kAN, is an unbiased estimate of
the line’s original length; it is the minimum variance unbiased estimator among
estimators of the form aN, +bN;, as a consequence of the fact thar a=1/v2
minimizes the coefficient of variation of c(8).

Tuming now to the question of how much to charge for branches and crossings,
we shall explain in the next section how a simple argument concerned with counting
the number of regions in the pattern leads to a paradigm for dealing with these
configurations.

B. Counting Regions

Suppose that, in the original pattern, the plane is divided up into a number of
simply connected regions, and tha* the edge process is an approximation to the
boundaries between regions in this configuration, Assume that the pixel size is
sufficiently small relative to the scale of regions in the pattern that each region is
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represented by a single connected set of pixels in the discretized image.

Apart from the total edge length, a natural measure of the complexity of the
pattern of regions is given by the number of regions. If the region boundaries form a
connected set, or equivalently if the regions are simply connected, the number of
regions can be counted simply by counting the number of "branches” and "crossings"”
in the edge pattern. To do this, the Euler-Poincaré formula [3, p.241] is used.

Suppose the original process is observed on a window W in the plane and at least
one boundary intersects the window edge. Define a verrex to be a point where three
or more regions meet, or where the boundary between two regions meets the edge of
the window. Define a boundary section to be the piece of boundary or of window
edge between two vertices. Let n, be the number of vertices in the pattern, n, the
number of boundary sections and n; the number of regions. The Euler-Poincaré
formula gives the equation

n, —n, +ne=1 ‘
and hence

ne=1+an,-n,.
Now both-n, and n, can be found by counting the number of branches and crossings
in the pattern, provided that points where an edge meets the edge of the window count

as branches. Let n, be the number of branches and n. the number of crossings. It is
immediate that

n, =n, +n,. 3.3
In order to count the number of boundary sections, notice that three boundary

sections meet at each branch and four at each crossing. Thus the number of ends of
boundary sections in 3n, + 4a., and since each boundary secton has two ends, we

have

n, = %nb + 2n,. (3.4
Substituting (3.3) and (3.4) into (3.5) yields

ne=1+ln, +n,. (3.9

Formula (3.5) gives a natural price to be charged for branches and crossings. If it is
desired to penalize an amount p for each region in the pattern, then one should charge
}p for each branch point and p for each crossing. If the edge configuration gives rise
to regions that are not simply connected the right hand side of (3.5) must be increased
by | for each connected set of edges which does not intersect the window edge. The
charge (bn, + n.)p can be considered in its own right as a penalty for the complexity

of the edge pattern which is calculable from local properties. The extra cost of p for
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each isolated connected set of edges cannot be calculated from local properties and,
thus, cannot be included in a restoration algorithm that operates entirely by local
updating; such an algorithm might, however, be extended to investigate the complete
removal of a small connected set of edges in the later stages of reconstruction.

This scheme of charging for branches and crossings does not include a cost for
the boundary length involved. We shall return to this point in Section § after the
necessary tools have been developed.

C. Endings

A pattern made up of disjoint regions cannot, of course, have a configuration of
edges containing any endings at all. Therefore the philosophy that we are adopting
would naturally lead to an infinite charge for configurations of type 1 in Figure 3.1.
This might still not be completely acceptable: although the configuration in Figure 3.3a
is prohibited, that in Figuré 3.3b is still allowed but note that points P and Q, which
lie close together in the same region, are separated by an edg=. Iz must also be

(a) (b)
Figure 3.3: Possible edge configurations.

remembered that to set any penalty value to infinity may lead to algorithmic
difficulties in using the model in practice. Also, a prior model for the edge process
under which some configurations have probability zero violates the conditon of
positive probability for all configurations under which the theory and practice of
Markov random fields are developed; see, for example, Section 4 of [2]. In any case,
it seems excessively dogmatic to exclude certain configurations completely, since there
may be good physical reasons for a boundary to peter out in the middle of a region.
Therefore an approach that is likely to be more satisfactory is to ascribe a cost 4 to
each "loose end" in the boundary pattern, where A is set to a relatively large value. In
fact, there is no advantage in seting A much greater than ip since a clever
reconstruction algorithm can simply build a small loop of edges onto a loose end at a
cost of }p for the branch. plus the cost of the edge length involved.




D. Summary and Example

We now summarize the appropriate relative costs of different configurations. Let
B be the desired cost per unit length of edge, p the cost per region of the pattern and 4
the cost per loose end. Then the programme we have set out gives as the costs
ascribed to possible configurations the costs set out in Table 3.1. Costs for edge
length and region counting appear separately; the costs for edge length associated with
configuradons 3, 4 and 5 will be derived in Section 5. As explained in Section 3C the
value 4 = }p is a reasonable choice but there is no obvious relation between p and B.
The interpretation of 8 as a cost per unit length of boundary makes it possible to
adjust the scores in a reasonable way if the pixel grid is refined, since the cost of edge
length in configuratons ! to 5 is adjusted automatically.

Type of configuration | Cost

0 (none) 0

1 (ending) 0.4128 + 1p
2 (tumm) 0.670h8

3 (continuation) 0.948 A8

4 (branch) 1.4h8 + p

5 (crossing) 1.94h8 + p

Table 3.1. Proposed costs for the configurations of Fig. 3.1.

In order to provide an illustration of the results derived in this section, some costs
for the pixellated edge patterns shown in Figure 3.4 were calculated. The pixel size
for Figures 3.4c and 3.4d is half that used in Figures 3.4a and 3.4b, and the unit of
length is taken such that & = | in Figures 3.4a and 3.4b. The costs are presented in
Table 3.2. Our costs are given in terms of 8 and p, and are also evaluated for the
case # =1, p =50. It can be seen that rotating the pattern affects the Geman and
Geman costs quite substantially but has very little effect on the costs calculated using
our methods. It can also be seen that our costs maintain consistency across the
different pixel sizes. The slightly larger costs obtained for the smaller pixels is
presumably due to a "fractal” effect in the discretisation of the coastline.




Figure Number of cliques Geman Proposed Proposed cost
type 2 cost cost with =1, p=50
34a 142 453 251.48+4p 451.4
3.4b 237 585 260.08+4p 460.0
3.4c 333 1011 273.18+4p 473.1
3.44 493 1223 275.58+4p 475.5

Table 3.2. Costs of edge patierns shown in Fig. 3.4

()

(L)

Fig. 3.4. Four discretisations of the same edge pattern,
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IV. IRREGULAR AND UNEVEN PIXEL ARRAYS

In this section we turn to the case of arrays of pixels that are no longer based on
a reguiar square lattice. One such case arises if a pixel pattern based on polar
coordinates is used, as shown in Figure 4.1. Such circular pixel patterns arise very
naturally in the restoration of images obscrved by positron emission tomography; see
Silverman et al. [6] for an application of the circular pixel patterns and Vardi, Shepp
and Kaufman (7] for a general discussion of the positron emission tomography
problem.

20,
..1?
N
ST
RS
RLSS

o
SR

Fig. 4.1. A circular pixel array useful for positron emission tomography images.

In general, the pixels might be more irregular still, and might even themselves be
generated by a random process. This is unlikely to be the case where the experimenter
has control over the pixel pattern. However, iregular pixels may well occur, for
example, in geographical applications, where the observed “image" is made up of
measurements averaged or cumulated over small irregularly-shaped regions, and it is
not felt desirable to superimpose a regular grid on the existing irregular pixel pattern.

A. Cliques for [rregular Edge Processes

We shall assume, for the moment, thart the pixel pattern forms a tessellation of the
plane or a portion of the plane, and that except at the boundary of the pattern, exactly
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three pixels meet at each vertex of the tesseilation. This assumpton is, of course,
violated for the circular lattice of Figure 4.1, since some of its vertices are of degree
three and some of degree four. It does, however, hold (with probability 1) for many
randomly generated pixel models, for example if the pixels are the Voronoi polygons
of a homogeneous planar Poisson process.

As in the case of the square lattice, the line-sites in the edge process will be the
boundary sections of the pixel array, and we shall suppose that each clique of the edge
process consists of the three line-sites meeting at a particular vertex., There are now
four possible types of configuratons for a particular clique in the edge process,
depending on how many edges are present in the clique. We shall say that the
configuration is of type & for k = 0,1,2,3 if k of the three line-sites in the clique are
actually occupied by edges. These configurations are illustrated in Figure 4.2.

)/‘— v p Vi
// y y
Type 0 1 2 3
Figure 4.2: Configurations for a vertex of degree 3.

Although, in contrast with the case of square pixels, there are fewer types of
configuration to consider, the irregularity of the pixels means that it is no longer
necessarily the case that all configurations of a particular type should atmact the same
penalty.

The first stage in the assignment of costs to various configurations is to use the
same region counting arguments as in the square lattice case to assign charges 0, }p
and i p to configuradons of types 0, I and 3 respectively. It remains to ascribe costs
for the edge length associated with each configuration. In order to do this, construct a
dual edge pattern by placing a point in each cell of the original pixel array, and joining
points if their corresponding pixels have some boundary in common. The vertices of
the dual array can, in principle, be placed anywhere in their corresponding pixels, but
in practice they will have a natural position. For example if the pixels are constucted
as the Voronoi polygons of a point process then the points of the process will
themselves be the vertices of the dual array.

Our assumption that exactly three pixels meet at each- vertex of the original
tessellation implies that the dual edge pattern will be a triangulation of the plane. In
the case of the square pixel array the cost of "continuation” configurations was
determined by considering a pattern with a single long straight edge, suitably
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. discretized to fit the pixel pattern. In the more general case, it is no longer quite so

clear how this discretization should be performed. One natural way to proceed is to
rrescribe that an edge segment will be present in the edge process if and only if the
corresponding dual edge is intersected by the straight line boundary. We assume, if
necessary giving the line an infinitesimal displacement perpendicular to its direction,
that no vertices of the dual triangulation lic exactly on the line.

Any edge process in the original tessellation corresponds to an edge process in
the dual mangulaton in the natural way, a dual edge being present in the process
whenever the corresponding original line site is occupied. Each clique of the original
edge process will correspond to a triangle in the dual triangulation; the original edge
configuration will be a “"continuadon” if and only if exactly two of the edges are
present in the corresponding dual clique. Every triangle intersected by the straight line
boundary will give rise 10 a continuation clique, since exactly two of its edges are
necessarily intersected by the line. We shall now describe two possible approaches to
charging for continuation configurations. The first of these appears more natural at
first sight, but it leads to much more complicated formulas; we shall also show that the
second has the additional advantage of being a genuine generalization of our square

pixel formulas.

B. Two Possible Length Penalties

Let us concentrate on a single wiangle i in the dual triangulation. The notation
for this miangle will be as in Figure 4.3. The capital letters A,B,C will be used for
both the vertices themseives and for the angles at these vertices.

Figure 4.3: A wiangle in the dual uianguladon.

The lower case letters refer to the sides themselves and to the lengths of these sides.
We shall derive possible ways of charging for the “"continuation” configuration bc
given by the presence of the edges dual to b and ¢ and the absence of the edge dual to
a. These costs will be based on the general idea that boundaries should cost an
amount B per unit length; for notational simplicity we shall assume henceforth that
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B = 1, and note that the costs obtained should be multiplied by S in the general case.

Let [ be a random line of fixed length L randomly situated in the plane, in a sense
that will be made precise below. Let L; be the length of the intersection of [ with the
wiangle i. Then our first possible cost for the continuation configuration oc 1s

Vi(i,b,c) = E(L; | [ intersects triangle i through » and ¢).

The motivation for this definition is swaightforward. Let /(i,e;,e;) be the
indicator variable taking the value 1 if [ intersects sides e, and e, of triangle { and 0
otherwise. Let L(i,e|,e;) be the length of the intersection of [ with triangle i if
I(i,e;,e;) = 1 and O otherwise. Now, ignoring end effects, the total line length
L =3 L(i,e;.e;) where the summation is taking over all triangles i and pairs of
edges (e ,e3). The total charge for the line ! is then

S1 = Y Iie,e) Ve, e).
(i.e1,2)
Thus, up to the approximation involved in ignoring erid effects,
E(Sy) = E[XI(i,ey.e;) E{L(i,e,e0) | 1(isey,€) = 1}]
' = E[TE(L(i.ey,e2))
= E(YL(i,e; e} =E(L)=L 4.1

and §; is an unbiased estimate of the line length, L. It is clear that the above
argument will also hold if V,(i.e,,e,) is replaced by E(g(i,e;.e;) | /(i e .ep) = 1}
for any function g(i,e;,e;) for which, apart from end effects, 3 g(i,e; ,e;) = L. Our
second proposed cost is also of this general form.

Figure 4.4: A side with negative projected length.

Let p, be the projected length of the side a on the line /; this length is to be
counted as negative if / makes an angle of more than % with a, in the sense shown in
Figure 4.4. The second proposed cost is

Va(ib,c) = E(p, | I intersects triangle i through b and c).
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To justify this definition, consider the union of all the triangles intersected by the line
I. This forms an irregular strip in the plane. The two edges of this strip, one on each
side of /, are made up by those edges not intersected by /. The total projection length
of these edges on /, neglecting end effects, is equal to twice the length of /, and the
sum of all the quantities like 4p, is equal w L. Hence S, = Y /(i,e) .e2) V,(i,ey.3) is
an unbiased estimate of L.

The sense in which / is a random line is as follows. Choose an origin O in the
plane and let R be large enough to ensure that the wiangle ABC is entrely enclosed
within the circle centre O and radius R. Now construct [ such that the perpendicular
from O to [ has orientation uniformly distributed on (0,2x) and length uniformly
distributed on (0,R). This is the distribution of / conditional on ! intersecting triangle i
through sides & and c if the pixel grid and associated triangulation is placed down in a
random position and at a random orientaton relative to the line /. By standard
stochastic geometry, the quantities V) and V, will be independent of the choice of R.

Figure 4.5: A random line intersecting the dual triangle.

We now calculate V; and V,. Let © be the angle between / and BC, measured as
shown in Figure 4.5. The first step is to find the density f(8) of © conditional on !
intersecting b and ¢. Note first that, of necessity, ~C < © < B; consider first the
range 0 < 8 < B.

For such 6, I will intersect ¢ and b if and only if it intersects c. The set of lines at
orientation § that intersect ¢ make up a strip of width ¢ sin (B—4) and so we have

f(8) = csin{B-9) for0 < @ < B.
For -C < 8 < 0, a similar argument yields
f(8) = bsin(C+8) for0<-8<C.
To calculate the constant of proportionality, we note that
3 . 0 . 8 . C .
| Io ¢ sin(B-8)dd + Lc b sin(C+6)de = ¢ J’o sinpdp + bJ‘o sin pdp

=p+c-ccosB-bcosC =b+c—-a,
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and hence we have

[c sin (B~8)/(b+c~-a) 0<o<B
f(8) = {bsin (C+8)/(b+c-a) -C<8<0
0 otherwise

To calculate V|, consider first 8 > 0. Given that 8 = 6 and that [ intersects ¢ and b,
the expected value of L; is half its vaiue when © = @ and [ passes through B. This
length is, by the sine formula, equal to ¢ sin Afsin(C+8). Hence we have

Vi = [J (ke sin A/ sin(C+6)) £(8)d8
+ [, (3 sin A/sin(B-9)) £(6)d6 (4.2)

Figure 4.6: The random line passes through B.

To calculate these integrals, first substitute @ = C + 8 and use the fact that
A+ B+ C = rtogive

[2 sin(B-6)/sin(C+6)d8 = [**“sin(B+C=p)/ sin ¢ do

0 C
=SinA Ig+ccot¢d¢+3cosA =sinA(logsinA —logsinC) + BcosA.

Substituting this and the corresponding formula for the second integral into (4.2) gives,
after some trigonometry,

(b+c~a)V; = }(c?B + b*C)sin 24
+1sin? A{(b? + cP)log sin A - c? log sin C - 62 log sin B}. (4.3)

This formula is complicated and inelegant, and it tums out that V, is much more
simply expressed. Given that 8 = ¢, we have p, = a cos ¢, and hence

V, = la J'-BC cos 6 £(8)do
. -1 (8B : C ’ ,o N
= (b+c-a) {J’o lac cos 6 sin(B-6)d8 + J’O lab cos 9 sin(C~-8°)dd }

4.4




S17-

The first integral in (4.4) is equal to
[4ac(sin B + sin(B~20))d6 = ac B sin B = }AB
where A is the area of the tiangle i, and hence
Vy = KB+C)A[(b+c-a) (4.5)

Thus it is clear that the formula for V, is very simple and more appealing than that for
Vl-

A second reason for preferring V, to V| will be elaborated in Section 5 below. It
is shown there that, for square pixel arrays, the projection approach produces the
minimum variance unbiased estimate of line length.

C. Line Length Associated with Endings and Branches

We now turn to the problem of ascribing a cost for the edge length associated
with configurations 1 and 3 of Figure 4.2. From now on we shall restrict our attention
to the ‘projection’ cost V;. As previously explained, the union of all triangles
intersected by the line ! forms an irregular stip in the plane and the sum of the
projection lengths of the edge: of this strip in the direction of / is approximately twice
the length of /. This approximation becomes exact if the strip is terminated with edges
AF and BF, as shown in Figure 4.7, and the corresponding edges at its other end.

\73,

C

Figure 4.7: An end of line / in the dua) tiangle ABC.
The vector 4 is a unit vector in the direction of /.

Let pr be the sum of the projections of AF and BF in the direction of / or, more
formally,

D = (A? + B—I'").A?.

where @ is a unit vector in the direction of / (see Figure 4.7) and AF and BF are
vectors. This definition automatically provides a correct treamment of any negative
projections. We define

V,y(i.c) = E(dpp | | intersects ¢ and terminates in triangle i),




- 18 -

where the distribution of ! and its end point are as described shortly. Repeatng the
argument leading up to (4.1) we see that the sum of costs V; is now an exactly
unbiased estimate of we length of line { when the line is placed at random on an
infinite pixel grid. (An infinite grid is needed to avoid problems at the window edge.)

In calculating V; for this case the distribution of line / is as described previously
but with an extra multiplicative factor proportional to the length of the intersection of /'
and the triangle ABC, only lines intersecting AB are considered and the right hand end
of the line is distributed uniformly along the length of the line [ inside the iriangle.
Again, this corresponds to the conditional distribution of the line and its end, given
that the line enters triangle ABC through edge ¢ and terminates inside the -tiangle,
when the pixel grid is placed in a random position and orientation. A long and tedious
calculation gives the value of E(}pg) for this case

Vy = 1K(2a% +a b+ab?+2b> - 3(a?+b?)c ~ (a-b)(bcos A - acos B)c

-3a2ccosAlogtaniA — 3b2ccosBlogtaniB ~ 3c(a? cosA + b2 cos B) log aniC )
where
2 ., p2 b -1
K= {a*“(BcotA + log?) + b*(Acot B + mg?) + abC cosec 7 )%,
This formula simplifies in special cases, for example, on a regular hexagonal grid in

which all dual triangles are equilateral of side 4, V2=(3‘/§/81r)alog3 .

A similar calculation could be performed for the branch in configuration 3 of
Figure 4.2. We shall not complete such a calculation but we shall describe the general
approach. A typical configuration in the dual space is depicted in Figure 4.8 and the
appropriate definition of pg is

pr = (AF + BE) @, + (CF + AF). 2, + (BF + CE).7,.

Figure 4.8: Three lines meeting in the dual tiangle ABC
and their associated unit vectors.
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When calculating V, = E(3pg) it should be noted that configurations such as that in
Figure 4.9 also give rise to the same configuration of pixel edges; this does not cause
a serious probiem and the total edge length will be estimated correctly as long as these
cases are treated as meeting in ABC. Note that for E(3pr) to be properly defined it is
necessary to introduce a joint distribution for the angles between the three lines,
preferably by appealing to specialised knowledge of the image in question.

Figure 4.9: Three lines meeting outside the dual triangle ABC but still
producing three edges meeting at the vertex associated with ABC.

V. REGULAR ARRAYS REVISITED

In the last section we defined two different ways of obtaining penaities for
continuation configurations. One of these was based on the length of the intersection
of a region in the dual triangulation with a random line, and the other on the length of
projection of such a region on a random line. It tumed out that the projection penzlty
gave a much more elegant result. In this section, we shall apply the intersection and
projection ideas to the regular square lattice considered earlier, and to rectangular and
hexagonal lattices.

D C

Figure 5.1: A random line intersecting a square in the dual lattice.
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A. Square Lattices _

Our aim is to obtain costs for the "tun" and “"continuation" configurations as
illustrated in Figure 3.1. The dual of the square latdce is itself a square lattice, and
the part of the dual corresponding to a clique is a single square of side 4 as in Figure
5.1. The configuration of edges in the original clique will be a straight continuation if
! crosses AD and BC. We find the diswribution of @ conditional on / being a random
line under this additional cor lition.

Figure 5.2: Lines of inclination 8 crossing AD and BC
form a strip of width V24 sin(F—61).

For ~% < 9 < %, the set of lines crossing AD and BC will be a stip of width
2 sin(% ~|6]) by some easy trigonomewry. Hence the density f;(68) of @

conditional on [ crossing AD and BC will sadsfy

i@ =Q=V2ytsin (5-l6),  -T<o< %

4

using simple calculus to find the constant of proportionality. The intersection length 5
is equal to h sec 6, and hence the expected intersection length is

J'f:;dhsecofl(e)de = j()”/‘(x—m)-l sec 8 sin (5-9)d6

= (V2-1)7! jo‘/“(l— tan 9)dd = (V2-1)"' [6~log sec 6]a/*
= (V2-1)"1(5-1 log 2).

Thus the "intersection" penalty for a configuration of type 3 in Figure 3.1 would be
(5-4log 2) A/(N2~1) = 1.06 h.

To find the "projection” penalty for such a configuration, note that the appropriate
generalization of the projection argument given in Section 4 is to take as penalty
Y(projection of AB and DC) because both AB and DC will be edges of the iregular
strip formed by the union of those dual squares intersected by /. Both AB and DC
have projection length h cos @ on /, and so the "projection” penalty for a configuration
of type 3 will be
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x/4 . —~1 /4 .8
J'_‘/‘h cos8f,(8)dé = (1—}‘5) h fo cos 8 sin (7-6)d8
= (2-V2)"'h jo'/" (sin § -~ sin (20~%)) a6

4

n

—;-xh/(w/i—l) = kh = 0.95 h

where k = § tan¥ as defined in Section 3.

To find the penalties for "turn” configurations, the work of Section 4 can be used
almost directly, by noticing that both the “intersection” and "projection” penalties will
be the same as those obtained there, for the case of a line crossing the two short sides
of an isosceles right-angled twiangle. Thus we set =m2, b=c=h,
B =C =% and A = § in the formulas (4.3) and (4.5).

We obtain as the intersection penalty for the tum configuration
V, = bhlog 2/(2-¥2) = 0.59 & and for the projection penalty V; = 2-1/2kn = 0.67 &.
It is noteworthy that the projection approach yields penalties for the two configurations
that are identical to - _:e obtained in Section 3. Thus, by the argument of Section 4,
up to the approximation of ignoring end effects, the projection penalty is the minimum
variance unbiased estimate of line length calculated from cliques of four line sites
only. The intersection approach yields a higher cost for straight condnuadon and a
lighter cost for tums and, thus, has greater than necessary variabiiity with orientation
in the cost of a long straight line boundary.

Following the development of Section 4, we now use the projection cost to assign
costs for edge length in configurations 1, 4, and 5 of Figure 3.1. For an ending
(configuradon 1), as shown in Figure 5.3, the required cost is

vV, = .’:?(&(A?-L + D-I:“).E’I ! crosses AD and terminates in ABCD).

The joint distribution of [ and F is essentially as for the case of an ending in a triangle
treated in Section 4.3 and routine calculation gives

Vy = (V2 = 1) + log (¥2 + 1)) ix.

D C
Figure 3.3: A line [ ending in the square ABCD in the dual latnce.

The unit vector « is in the direction of /.
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edge !

Figure 5.4: Line [ crossing dual edge AD and leaving the window.
Dotted lines show edges present in the edge process.
The unit vector 4 is in the direction of /.

A case not yet mentioned is that of a line ending at the edge of the window.
Figure 5.4 shows a line meeting the window edge after crossing edge AD of the dual

square ABCD. To complete the irregular strip containing that part of ! within the

window we need to add edges AF and DF. Thus the cost of edge GF in the one edge
clique associated with G is

V, = E(&(A?‘ + FB).?I | crosses AD and then leaves the window).
Strictly speaking, this depends on the posidon of G reladve to the comers of the

window. The calculation is simplified if we assume an infinite window edge, in which
case V, = xhl4.

¥,
Ak B Al B A EZB A l
Il/E\ / \\\
- E " i 1 i ﬁ@
/1/
C D C D C D C D
o . o @
g U, Lh @ &2 R 2
Bl = = = A —
u3 u3 3 P

Figure 5.5: Three lines meeting in or near dual square ABCD
and associated unit vectors.

A branch (configuration 4) arises when three lines meet. In all four cases shown
in Figure 5.5 the branch is associated with dual square ABCD and the sum of the
projection lengths required to close off the irregular strips containing /) /; and /3 is

pr = (DF + AF).0, + (AF + BE).i, + (BF + CF).iiy.
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In calculating V, = E(}pr), the expectation is with respect to a uniform distribution of
the point of intersection F in the plane and of the orientaton of the set of lines
l;, Iy and I3, conditional on sides DA, AB and B8C but not CD being intersected. For
a given set of angles between the three lines containing no acute angle, calculation of
V, by numerical integration or Monte Carlo estimation is straightforward. Note,
however, that if the lines do meet at acute angles the associated edge process can be
more complex than a single branch, as shown in Figure 5.6.

—

Figure 5.6: Lines {1, /7 and /3 meeting at a point. The dotted lines
representing elements of the associated edge process include a
crossing and three branches.

For the special cases of three angles of 27/3 and angles of x/2, /2 and x between the
lines I;, andl;, V, =1.32h and 1.45h respectively. The value V, = 1.44
associated with configuration 4 in Table 3.1 was chosen as a compromise between
these two cases.

A crossing (configuration 5) can arise when four lines meet but this will not
always be the case. In Figure 5.7b the meeting of four lines produces two adjacent
branches rather than a crossing in the edge process: the projection costs calculated for
a branch formed by the meeting of three lines are inappropriate in xhis' case but a
proper treatment would be possible if the clique size were enlarged. When the
meeting of four lines does produce a crossing in the edge process the configuration
must be of the type shown in Figure 5.7a, and the projection cost is

V, = EQ((DF + AE).@) + (AF + BE).@) + (BF + CF).%y, + (CE + DF). 7))

where F is distributed uniformly over the interior of ABCD and the orientation of the
set of four lines is uniform conditional on one line intersecting each edge. For the
case of four lines meeting at right angles and producing a crossing in the edge process
numerical integration gives V, = 1.94 4 and this is the value used for configuration §




in Tabie 3.1.

|

l3

(b) *

Figure 5.7: Four lines meeting at a point. Dotted lines show elements of
the associated edge process. Unit vectors 4j,...,il4 are in the |
" directions of lines /1,....l4. w

B. Rectangular Pixels

In this section we consider rectangular pixels of length h; and breadth h,.
Corresponding to the six possible types of configuratons of edges in Figure 3.1 there
are now nine possible essendally different configurations, since there are two types
each of endings, continuations and branches. For brevity we shall concentrate on the
‘costs for continuations and turms. The cost of a turn is calculated by applying
formula (4.5) to a right-angled triangle with short sides h;, and h,, yielaing the
quantity Xk hy/(hy + hy = (R2+hP)V2),

m

—_—

hy - D hy C

Figure 5.8: A configuration for a clique in the rectangular pixel case.

The cost of a continuation of the kind shown in Figure 5.8 is calculated as in
Section 5.1. Let 8 = tan™'(h,/h;). For |6] < 8, the set of lines of inclination 8
intersecting AD and BC forms a strip of width proportional to sin(8y-|4|), and the
projection length of AB and CD on a line of inclination 6 is h; cos 6. Hence
arguments exactly analogous to those of Section 54 give as the cost of a
“continuation” as shown in Figure 5.§ the quantity
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8, -]
hy j0°cos 8 sin (8-6)d0 | |, sin (6-6,)de
8, 8,
= yhy [, (sin 8o+ sin(6p~26)}d8 / J, sing s’

= hy 6y sin 6p/(1= cos 6y). (5.1)

The other type of continuation, consisting of two edges of length 45, will cost an
amount obtained by substimting h, for Ay and 7 -6y for 8y in (5.1), viz.
Yhy(7—6y) cos 8o/ (1= sin 6p).

C. Hexagonal Pixels

The presence of a single type of first order neighbour makes the use of hexagonal
pixel grids appealing, particularly in applications such as tomography where physical
properties of the imaging system do not define a natural pixel grid. The dual space of
a grid of regular hexagons with sides of length / contains equilateral triangles of side
1y3. Applying the formulas of Section 4, the projection penalty and the edge length
penalty for a continuation in the dual space are both equal to {zl. Since only one form
of branching is possible, the region counting penalty and the expected projected edge
length penalty for a branch will always appear together and it does not help to evaluate
the latter quantity. Thus, the penalties for cliques of type 0, 1, 2 and 3, as depicted in
Figure 4.2, are 0, }p, }7iB and 1 p respectively.

V1. CoNCLUSION

Some simple geometrical considerations have made it possible to define edge
process penalties which are approximately invariant to the scale and orientation of the
pixel grid, and which can in addition be generalised to irregular pixels. The general
idea of evolving penalties based on a conditional expected projection length has the
advantage that consistent penalties can be written down for cliques of different kinds
that appear in different parts of the same pattern.
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Appendix 5
Flexible parsimonious smoothing and additive modeling.
by

J. H. Friedman and B. W. Silverman




1. Introduction
In this paper we shall develop an approach to regression fitting based on an extremely simple
idea. Consider first of all the univariate case where one has .V pairs of measurements (yi, z;),

i=1,---,N,and it is supposed that, as usual,
Y = f(X) + error (1)

where f is a function to be estimated, and the error is assumed to have zero mean; its distribution
may well depend on the value of X.

Regression, or curvefitting, is performed for a number of reasons. The value f(X) is the
conditional expectation of Y given the value X, and so may be used as an estimate of the response
Y for future observations where only the value of the predictor variable X is measured. The
function f can also be studied to try to gain insight into the predictive relationship between Y
and X. By far the most commonly used approach is, of course. linear regression. It is assumed -
rightly or wrongly ~ that f is a linear function f(X) = ¢X + b, and then the parameters a and &
are estimated by least squares.

What should be done if the data are not well approximated by a straight line fit? One way
forward is to allow f to be a piecewise linear function, made up of straight line pieces that join
together continuously at points called knots. If the knot positions are fixed before looking at the
data response values y;, then, at the expense of introducing more parameters into the problem,
we will be able ;o fit a wider range of data sets reasonably well, while still including simple linear
regression as a special case. Furthermore all the necessary parameters can be found and inference
performed using standard linear regression methods (see Agarwal and Studden, 1980).

In terms of flexibility, much greater dividends arise if the knot positions are not fixed in advance,
but are themselves allowed to depend on the data. including the response values. In this case an
enormously wide range of models can be closely approximated using piecewise linear functions f
with a small number of knots. There is a computational penalty to be paid. because some sort
of search procedure needs to be used to find suitable positions for the knots. In this paper. we
describe a stepwise procedure that makes it feasible to fit piecewise linear models with knot positions
determined by the data, and we also discuss practical strategies for deciding how many knots to use.

One of the attractive features of our method is that it can very easily be extended to the
multivariate case. Suppose that the observations are of the form /y;.x;) where each x, is now a

p-vector (Z1i, L.+ . Zp). It is assumed. as before, that the variable ¥ depends on X by a relation
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of the form

Y = f(X) + error = f(Xy,X3,--+,X,) + error.

The way that we make use of our ideas about piecewise linear fitting is to concentrate on the case

where f is a sum of functions of the individual components of X,
fX) = AMX) + (X2} + - + (). (2)

This approach is known as additive regression or additive modeling, and replaces the problem
of estimating a function f of a p-dimensional variable X by one of estimating p separate one-
dimensional functions f;. Although not completely general, additive models are often effective:
they are easy to interpret, and represent a very important step beyond the simple linear model.

It turns out that our piecewise linear fitting method can be applied easily in the additive
modeling context. Each of the individual functions f; can be modeled as being piecewise linear
with knots that depend on the data, inciuding the response values. Our stepwise fitting procedure
enables all the functions f; to be constructed together, at little extra cost than for a univariate
problem.

The paper is set out as follows. In Section 2.0 we give a general discussion of smoothing
methods. We go on in Sections 2.1 and 2.2 to develop our approach in the univariate case. Com-
putational aspects are discussed in Section 2.3. The important question of model selection - how
many knots to use - is cous.dered in Section 2.4. In 3ection 2.5 we provide a simple extension that
produces models with continuous first derivatives (if desired). In Section 3 we explain how the ad-
ditive modeling approach enables our method to be applied in the multivariate case. and in Section
4 we demonstrate how confidence intervals for the estimated function(s) can be obtained. Finally
in Section 5 a number of practical examples display the scope and power of our method as a data-

analytic tool.

2.0 Smoothing
We first consider the case of a single predictor variable, p = 1. The smoothing problem has
been the subject of considerable study, especially in recent years. The lack of ﬂexibility (ability to

closely approximate a wide variety of predictive relationships) associated with global fitting
J
frizy=ag+ 3 a,Py(z) (3)
J=1

where the P; are predefined functions (usually involving increasing powers of r) has led to devel-

opments in two general directions: piecewise polynomials and lo:al averaging. The basic idea of
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piecewise polynomials is to replace the single prescribed function f;(z) (of possibly high order J)
defined over the entire range of X values, with several generally low order polynomials, each defined
over a different subinterval of the range of X. The points that delineate the subintervals are calied
knots. The greater flexibility of the piecewise polynomial approach is gained at some expense in
terms of local smoothness. The global function is generally taken to be continuous and have con-
tinuous derivatives to all orders. Piecewise polynomials on the other hand are permitted to have
discontinuities in low order derivatives (and sometimes even the function itself) at the knots. The
tradeoff between smoothness and flexibility is controlled by the number of knots at which disconti-
nuities are permitted and the order of the lowest derivative allowed to be discontinuous. The most
popular piecewise polynomial fitting procedures are based on splines (de Boor, 1978). An M-spline
consists of piecewise polynomials of degree M constrained to be continuous and have continuous
derivatives through order M — 1. Smith (1982) presented an adaptable knot placement strategy
for spline fitting based on forward /backwards variable subset selection.

Local averaging smoothers directly use the fact that f(z) is intended to estimate a conditional

expectation, E(Y|z). These estimates take the form

N

Hay=Y_ dl(z,z0y (4)

i=1
where H(z,z") (called the kernel [unction) usually has its maximum value at z’ = z with its absolute
value decreasing as |z’ — z| increases. Therefore, f(z) is taken to be a weighted average of-the y;,
where the weights are larger for those observations that are close or local to r. A characteristic
quantity associated with a local averaging procedure is the local span s(z), defined to be the range

centered at z over which a given proportion of the averaging takes place.

z4+3(z)/2
/ H(z,z"Ydz' = o,
z-s(z)/2

with o a predefined constant fraction (i.e.. @ = 0.68 or 0.95). If the defining property holds for
more than one value of s(z), then the smallest such value is taken. Many local averaging smoothers
take the span to be constant over the entire range of z. s(zx) = A, (Rosenblatt, 1971). Others
take it to be iaversely proportional to the local density of r values. s(z) = A/p(z) (Cleveland.
1979). Smoothing splines (Reinsch, 1967) are in fact local averaging procedures where the span
turns out to be approximately s(z) =~ A/[p(z)]'/* (see Silverman. 1984. 1985). (The quantity A
represents a parameter of these procedures.) Recently, adaptable span local averaging smoothers

have been introduced that estimate optimal local span values based on the values of the responses.
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yi. (Friedman and Stuetzle, 1982, Friedman, 1984). The span function s(z) controls the continuity-
flexibility tradeoff for local averaging smoothers. For the nonadaptable smoothers this is in turn
regulated by A, the smoothing parameter of the procedure.

There is, of cqurse, a connection between the piecewise polynomial and local averaging ap-
proaches to smoothing. For a given knot placement, piecewise polynomial curve estimates can
also be expressed in the form given by (4) (as can global fits). There will be a characteristic local
span associated with the corresponding kernel. The more flexible the smoother is to local varia-
tion, the smaller will be the span. The basic difference between the two approaches has to do with
how the span is specified. With local averaging smoothers the span parameter A usually enters fun-
damentally into the definition of the kernel function {or some other aspect of the definition of the
smoother) and is either directly set by the user or some automated procedure (i.e. cross-validatory
choice) is employed for its selection. For piecewise polynomial smoothers it is indirectly regulated
by the choice of the number and placement of the knots, and the degree of continuity required at
the knot positions.

The trade-off between continuity and local flexibility is a fundamental one that directly affects

the statistical performance of the smoother as a curve estimator. If one assumes that there exists a

popwation from which the aata can be regarded as a random sample. then the gual is to estimate

the conditional expectation E(Y|X = z) for the population. Even if this is not the case the
goal is usually to obtain curve estimates f(z) that have good (future) prediction ability for new
observations not part of the training sample used to obtain the estimate.

Increased flexibility provides the smoothing procedure with an increased ability to fit the data
at hand more closely. This may or may not be good. depending on the extent to which this training
sample is representative of the population of future observations to be predicted. It is often the case
that fitting the training data too closely results in degraded estimates with poor future performance.
This phenomenon is called “over-fitting” and can be quantified through the bias-variance trade-off.

The (future) expected-squared-error can be expressed as
E(f*(z) - f()* = [f7(z) = Ef(2)]* + Varf(z). (3)

where f*(z) = E(Y|X = z) for the population (future observations). The expected values in (5)
are over repeated replications of the training sample. The first term on the right hand side of (3)
is the squared distance of the average (expected) curve estimate from the truth. It is referred to
as the “bias-squared” of the estimate. As the smoother is given more flexibility to fit the data.

the bias-squared generally decreases while the variance increases. Thus, for each situation there is
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a (usually different) optimal flexibility. If a smoothing procedure is to provide good performance
over a wide variety of situations, it must be able to effectively adjust its flexibility-continuity trade
off for each particular application.

Motivated by the work of Smith (1982), we present an adaptable piecewise polynomial smooth-
ing algorithm. It uses the data to automatically select the number and positions of the knots,
and to some extent the degree-of-continuity imposed at the knots as well. Although quite sim-
pie the method has bath ~perational and performance characteristics that are quite similar to
the recently proposed adaptable span local averaging smoothers (Friedman and Stuetzle, 1981,
Friedman, 1984). It appears to have superior performance in low sample size and/or high noise
situations.

Our focus is on accurate estimation of the curve itself and not necessarily its derivatives. We
therefore restrict our attention to low order polynomials with weak continuvity requirements at the
knots. This has the effect of minimizing the average effective span (see above) for a given number
of knots. This is important if accurate solutions with a small number of knots are required. This will
be the case in high noise small sample environments. Our simplest method employs piecewise linear
fitting where only the function itself is required to be continuous. We also describe a companion
method that fits with piecewise cubic functions where continuous first - but not second - derivatives
are imposed. This has the advantage of producing curves that are more cosmetically appealing, if
less interpretable. It may sometimes, but not always, produce slightly more accurate estimates in
situations where the second derivative of the underlying true curve is nowhere rapidly varying.

Our estimate of future prediction error - to be minimized ~ is based on the generalized cross-
validation measure (Craven and Wahba, 1979). A brief explanation of generalized cross-validation
(GCV) is given by Silverman (1985, Section 4.1). To explain GCV it is first necessary to mention

cross-validation (CV). Let K be the number of-knots in the fitted model. The CV score is given by

1

T\T [3/! "f—l(-ti)]-

(M=«

CV =

=1

where f_, is the estimate calculated with the current values of the control parameters (in our case
the number of knots) from all the data points except the ith. The cross-validation score is then a
function of K', and gives a measure of future prediction error that may unfortunately be laborious
to calculate.

GCV can be thought of as an appropriate version of CV that has better computational prop-

erties. For a suitable increasing function d(X') of the number oy knots. the GCV 3core is defined
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by

ad d(K)y,
GOV = S lus = S - ST (®)

If the knot placement values do not depend upon the sample response values y;, then it can be

shown that an appropriate choice of d(K) is
N
d(K) =) H(zi 1))
i=1

where H is the kernel function (4). For piecewise linear fitting by least squares with A knots, this
turns out to be d(X) = K + 1. It can be shown that this choice of d{A") makes GCV and CV
identical in certain special cases.

For adaptable span smoothers, such as those we introduce in the present paper, the approx-
imation is no longer good because of the additional flexibility given by the free choice of knot
positions. To compensate for this, we use (6) as an approximation with d( k') taken to be a more

rapidly increasing function of A'; we discuss our choice of d(A") in Section 2.4 below.

2.1 Piecewise linear smoothing
We describe first piecewise linear fitting. For a fixed number of knots A', we aim to place the

knots to give the minimum possible value of the average-squared-residual (ASR)

ASR = [yl - Jr\lll ﬂz

M=

1
N

]

]
—-

for estimates f(z) chosen to be continuous and piecewise linear with the given knots. Given a set
of knot positions there are a number of ways to construct the corresponding piecewise linear fit that
minimizes the ASR. These involve choosing a set of basis functions bx(z).1 < k < A, parameterized

by the knot locations, that have the required continuity properties. The curve estimate is then

taken to be
K
Hz)=ao+ Y acbu(z). (0
k=1
The values of the coefficients ag, - -, ax corresponding to the piecewise linear curve that minimizes

the ASR, are obtained by a (A" + 1)-parameter linear least-squares fit of the response Y on the
basis function set dx(z).
There are a variety of basis function sets with the proper continuity properties for piecewise

linear fitting. The most convenient for our purposes is the set .

be(z) = (2 - t)* 121

t




where t; is the location of the kth knot and the superscript indicates the nonnegative part. The
convenience of this basis stems from the fact that each basis function is parameterized by a single
knot. Thus, adding, deleting, or changing the position of a knot affects only one basis function.

Optimizing the ASR over all possible (unequal) locations for the K knots is a fairly difficult
computational task. We therefore consider the subset of locations defined by the distinct values
realized by the data set. This has the effect of providing more potential knot locations, and
thus more potential flexibility, in regions of higher data density and correspondingly less potential
flexibility in sparser regions. This attempts to control the variance, since regions where the ratio
of data points to knots is low can give rise to locally high variance in the curve estimate.

Even the (combinatorial) optimization of the 4SR over this restricted set of locations is
formidable owing to the large number, N, of potential basis functions from which the optimiz-
ing K must be chosen. We therefore adopt a stepwise strategy for knot placement. The first
knot (k = 1) is placed at the position that yields the best corresponding piecewise linear fit.
Thereafter, each additional knot is placed at the location that gives the best piecewise linear fit
involving it and the k — 1 knots that have already been placed. Knots are added in this manner
until some maximum number of knots ( Amax) have been positioned. This process yields a sequence
of Km:‘ models, each one with one more knot that the previous one in the sequence. That model
in the sequence with smallest GCV as defined in equation (6) is chosen for further consideration.
The number, K max, of models to be considered should be chosen so that the model minimizing the
GCV is not too close to the end of the sequence. Owing to the forward stepwise nature of the
procedure, it is possible for the GCV sometimes to increase locally as the sequence proceeds and
then begin to decrease again. The bound K, should be large enough so that the GCV associated
with the last model is substantially larger than the minimizing one in the sequence.

The model (with K™ knots: 0 < A" < K pax) that was found to minimize the GCV is next
subjected to a backwards stepwise deletion strategy. Each of its knots is in turn deleted and the
corresponding K™ — 1 knot model is fitted. If any of these fits results in an improved GCV. the one
with the smallest is chosen. permanently deleting the corresponding knot. This procedure is then
repeated on the new A'™™ — 1 knot model. deleting a knot if a better model is found. This continues
until the deletion of any remaining knot results in a curve with higher GCV".

This knot deletion strategy can sometimes result in an improved model because of the nature
of forward stepwise procedures. The first few knots must deal with the global nature of the curve
without the benefit of the additional knots that come later. They are. therefore. forced to ignore

the fine structure. Knots that are added later in order to model the fine structure can in aggregate
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also account for the global structure, thereby causing the initial few knots to be redundant.

Knot deletion as described above seldom results in a dramatic improvement in GC'V'. It is worth
doing for the small to moderate improvement it sometimes provides, because it adds almost nothing
to the computational burden. All necessary calculations can be done using summary statistics
(basis covariance matrix and response covariance vector) already calculated for the original K-

knot model. No further passes over the data are required.

2.2 Minimum span

A natural strategy would be to make every distinct observation abscissa value a candidate
location for knot positioning. This would correspond to allowing the minimum local effective span
to include only a single observation. In low noise situations such a strategy can give reasonable
results. In high noise environments, however, this can lead to unacceptably high local variance.
A solution is to impose a minimum effective span by restricting the eligible knot locations. The
simplest implementation is to make every (distinct) M th observation (in order of ascending z-value)
eligible for knot placement. This implementation also reduces computation by a factor of .V/.\I' in

the absence of ties.

A reasonable value for M. as a function of .V, can be obtained by a simple coin tossing
argument. Suppose y; = f*(ri) + 5. 1 < i < NV, where ¢; is a mean zero random variable
with a symmetric distribution. Then ¢; has an equal chance of being positive or negative. A
smoother will be resistant to a run of length L of either positive or negative errors so long as
its span in the region of the run is large compared to L. If not. the smoother will tend to follow
the run and hence incur increased (variance) error. A piecewise linear smoother can completely
respond to a run without degrading the fit in any other region (irrespective of the placement of
the other knots) if it can place three knots within its length. It can partially respond with two
knots in the run for an unfavorable placement of the other knots ii.e. one of them close to the
start or end of the run). This would suggest that the minimum knot increment M should satisfy
M > Lnax/3 (or M > Lmax/2.5 to be conservative) where L,y 15 the largest positive or negative
rmn to be expected in .V binomial trials.

Let PriL) be the probability of observing a run of length L or longer in .V tosses of a fair coin.

For small valies of this probability a close upper hound is given " v

Noo/L
o X Ny -1/ N =1L
Prt[n::"-\'zv{—li""( J ‘>( \ Y ) 3
— ! -
=L =1 . 4




(Bradley, 1968). One can choose a value a for this probability

Pr(l)=a (10)

{say a = 0.05 or 0.01) and solve (9), { 10) for the corresponding length L(a). Setting M = L(«)/2.3
would (with probability a) give resistance to a run of positive or negative error values. Solving (9),

(10) for L(a) would have to be done numerically. It turns out that the simple formula
L(a) = - logy[--In(1 - a)
a ——ogz[—"vn -a

approximates the solution quite closely {within a few percent) for @ < 0.1 and .V > 13. This

suggests that a conservative increment for knot placement is given by
1 .
M(N,a)= —10g2[—vln(l—a)]/‘2.o {11}
with 0.05 € & < 0.01.

2.3 Computational Considerations

For each k > 0. at the kth step in the forward stepwise procedure described in Section 2.1 it is
necessary to optimize the pcsition of the sth knot {over all eligible locations) given the positions of
the & —1 previously placed knots. For a given knot placement increment M there are (in the absence
of ties) .V/M — k + 1 eligible places to position the kth knot. (The positions of the k — 1 previously
placed knots are not eligible.) At each such potential new knot location a linear least-squares fit
must be performed to obtain the corresponding piecewise linear smooth and its associated ASR.
Thus approx—m/ailfey V/M linear least-squares fits must be computed to place each knot. If this
were implemented in a straightforward manner it would give rise to prohibitive computation in all
but the richest computing environments. Enormous computational gains can be realized, however.
by examining the set of eligible knot locations in a special order that permits the use of rapid
updating formulae associated with the basis (3). This strategy involves visiting the potential knot

positions in descending abscissa value and taking advantage of the fact that (for ' > ¢")

0 r <t
(=t —(r—t"h"=(—t" <<t (12)
=t >t

The linear least-squares fit for the kth knot (located at i = "1 can be accomplished by solving
the normal equations

Ba=c¢ DR A
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where B is the k X k covariance matrix of the k basis functions (8),

N
le = Zb[(l‘,‘)[bj(t,‘) - 51'], (14a)

i=1

and c is the k-dimensional covariance vector of the response with each basis function

~
¢ = Z(yi - §)bj(zi). (14b)

i=1

Here Ej and § represent the averages of the corresponding quantities. The solution vector a =
(a1, --,ak) represents the coefficients corresponding to the optimizing piecewise linear fit (7) given

the knot locations ¢y,---,t,. The ASR of the fit is then given by

ASR = Var(Y) - ‘2 a,¢,/N. ’ (14¢)

j=1
Using (13), (14) as prescriptions for computing the corresponding quantities at each potential
knot location leads to the prohibitive computation mentioned above. The first thing to notice in
attempting to save computation is that only-cx and Bji, 1 £ j < k need to be recomputed since
only ihe kth knot location is changing. (This reduces the computation by a factor of k.) The next
thing to note is that if these quantities have already been computed for a knot located at t, = ¢’

then, from (12), 2 simple series of updates gives them for a knot located at t, =t (' < ¢'). Let

so= D (yi- 9.

2t

sj= Y (b;(z:) =5, 1<j<k-1.

z, 2
u= Z 1, and v= Z .
T, 2t 2t
Then
k() = eult) = (¢ ~thso+ D (z = "Wy - ).
e lmict
Boult") = Bu(t) + (1 =ty = > (zo=t"Wbylr ) =by. 1< <k
et
Bik(t") = Bailt) = (¢F =t u+ 200 —t"e+ S iz, -7
TR '

gives the quantities that enter into the normal equations {13) for t, = t". given their values at
te = t'. All values are initialized to zero fi.e. cilzy) = Bulznvi=0.1 < ; < k.
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These updating formulae provide the ingredients for the normal equations (13) at all potential
knot locations with total computation of order V. It remains to soive the normal equations at
the (approximately .N/M) eligible locations for knot placement. This can be done most rapidly by
using the Cholesky decomposition of B followed by back-substitution fsee Golub and Van Loan,
1983). Since only the last row and column of B are changing, its Cholesky decomposition can be
updated with k¥* computations (Golub and Van Loan, 1983). The back substitution can also be
performed in k® computation. Therefore the dominant part of the computation for optimizing the
AS R with respect to the position of the kth knot is of order k*.V/M. The computation associated
with a single linear least-squares fit is of order k>.V. Therefore, the updating strategy permits the
implicit evaluation of .N/M linear least squares fits with less computation than a single such fit.
The entire procedure for placing all K max knots in the forward stepwise procedure requires roughly
the same computation as K max/3 linear least squares fits with Kn.x variables.

The computational strategy outlined above emphasizes speed over numerical stability. First of
all, the one sided basis (8) is known to have poor numerical properties compared to other possible
representations of pieqeu'lise linear functions (de Boor, 1978). Their advantage lies in the fact
that each basis functioneis characterized by a single knot. This leads to the simple and rapidly
computable updating formulae derived above. A second compromise is the choice of the normal
equations with the Cholesky decomposition of the basis covariance matrix to perform each linear
least-squares fit. It is well known that using the Q R decomposition of the basis “data” matrix would
provide superior numerical properites (see Golub and Van Loan, 1983). Unfortunately. updating
the QR decomposition requires computatibn proportional to k.V (compared to k* for the Cholesky
strategy) which would cause the total computation to be proportional to V2.

Potential numerical difficulties associated with this particular strategy are mitigated by two
factors. First the minimal span requirement (11) limits somewhat the correlation between basis
functions (8) associated with adjacent knots. Second, for sample sizes that are not extremely large.
the number of knots is generally quite small, keeping the size of the associated least-squares problem
small. Numerical problems tend only to arise when this strategy is applied to very larée problems
(typically .V > 500) for which the resulting solution is a very complex curve requiring a great many
knots. For these cases numerical stability can be achieved by slightly deoptimizing the least-squares
fit (13) at each potential location for the Ath knot. The basis coefficients a = (ay.---.ai) of the

piecewise linear fit are taken to be the solution to

iB+ela=c.




with I being the & x k identity matrix, aua the value of ¢ chosen to be just large enough tc
maintain numerical stability. Although these coefficient values can be somewhat different from
those produced by (13) in highly collinear settings, they produced nearly identical curve estimates

(7). The criterion used to select the best knot location is still the ASR. Typically, taking
€ =10"% trace B/k

maintains stable computation while having very little effect on the resulting curve estimate.

2.4 Model Selection .

In order to implement the forwards/backwards stepwise knot placement strategy described in
Section 2.1 it is necessary to have an estimate of the future prediction error. For procedures that
are linear in the responses (4) a variety of estimators (model selection criteria) have been proposed
(Akaike, 1970, Mallows, 1973, Craven and Wahba, 1979, Shibata, 1980, Breiman and Freedman.
1983). For a given knot placement (fixed set of regression variables) our method is linear in the
responses. However, we use the response values to determine where to place the knots. As a
result our curve estimator is not linear in the responses (H(z, z;) depends upon y; - - -y, ). There is
increased variance in the curve éstimates corresponding to the variability associated with the knot
placement that is not incorporated into the above criteria. For ronlinear procedures, techniques
based on sample reuse (Cross-validation. Stone, 1974, and Bootstrap, Efron, 1983) are appropriate.
These require considerable computation, however, and a common practice is simply to ignore the
increased variability associated with model selection. If the number of selected variables is not very
much smaller than the size of the initial set. the increased variance is not large. and such a strategy
may be effective. In our situation, however, this is not the case. We intend to select a few knots
usually from a very large number of potential locations.

The basis for our model selection strategy lies in the work of Hinkley {1969, 1970) and Feder
{1973). They consider the problem of testing the hypothesis that a two-segment piecewise linear
regression function in fact consists of only a single segment, in the presence of normal homoscedastic

errors. Specifically, it is assumed that
Viza+bXi+c(X, - )" + ¢, (131

with £, ~ N(0.07%). and one wishes to test the hypothesis that ¢ = 0. If the knot location ¢ is
specified in advance then (under the null hypothesis Hy : ¢ = 0) the difference between the (scaled)

residual sums of squares from the respective two and three parameter least-squares fits follows a
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chi-squared distribution on one-degree-of-freedom, y;. That is, the additional parameter, c. uses
one additional degree-of-freedom.

When one adjusts the knot location t, as well as the coefficient ¢, then this is no longer the
case. Furthermore, under the condition ¢ = 0 the parameter ¢ is not identifiable. and so we
cannot use the usual asymptotic theory and just add a degree-of-freedom for the additional fitted
parameter t. Feder (1975) shows that {under Hp : ¢ = 0) the difference between the residual sum-
of-squares from the respective two and four parameter fits asymptotically follows the distribution of
the maximum of a large number of correlated x? and Y3 random variables. Furthermore, the precise
correlational structure (and thus the distribution) depends on the spacings of the observations. Such
a distribution will give rise to considerably larger test statistic values than x} and generally larger
values than even y3. That is, the additional parameter ¢ uses more than one additional degree-
of-freedom. Hinkley (1969, 1970) reports strong empirical evidence that the distribution closely
follows a chi-squared on three degree-of-freedom. Thus, fitting both the additional coefficient, c.
and the corresponding knot location, t. uses about three additional degrees-of-freedom.

A similar effect was reported by Hastie and Tibshirani {(1985) in the context of projection

pursuit regression (Friedman and Stuetzle. 1981). Here the model is

P
¥i = 9(20‘:5:\‘) + 24
i=1 .

with ¢ ~ N¥(0,0%), and g is a smooth function whose argument is a linear combination of the P
predictor variables. The objective is to minimize the residual sum of squares jointly with respect
to the parameters defining both the function and the linear combination in its argument. The
null hypothesis Hy is that g is a constant function. Hastie and Tibshirani (1985) performed a
simulation experiment to obtain the distribution of the scaled difference of the residual sum of
squares as a function of the number of parameters associated with the function g. for p = 3 and
.V = 360. They found that the expected value of this distribution was always greates than the sum
of the number of parameters associated with both the curve and the linear combination (except
for the degenerate case - g linear). This effect became more pronounced as more parameters were
associated with g. These results, together with those of Hinkley (1969. 1970) and Feder {1973).
indicate that the number of degrees-of-freedom associated with nonlinear least-squares regression
can be considerably more than the number of parameters involvec in the fit.

Our knot placement strategy does not perform an unrestricted minimization. but rather min-

imizes the ASR over a restricted set of eligible knot locations. In the absence of a large number of
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ties, however, the solution value for the ASR is not likely to be a great deal different. Thus, follow-
ing Hinkley (1969, 1970) and associating a loss of three degrees-of-freedom for each knot adaptively

placed (with our strategy) seems reasonable, if a bit conservative. We therefore use
d(K)=3K +1, (16)
in conjunction with the generalized cross-validation estimate of future prediction error (6), as a

model selection criterion to be minimized.

2.5 Piecewise cubic fitting

Continuous piecewise linear curves provide maximum flexibility for a given (small) number of
knots. They also have the advantage of ready interpretation: linear relationship within subintervals
of the range of X. Their principal disadvantage is the discontinuity of the first derivative (infinite
second derivative) at each knot location. This causes the curve to be cosmetically unappealirg to
some.

Also, if the true underlying function f*(z) (5) does not have a locally high second derivative
close to a knot location, then a piecewise linear approximation will exhibit a small increased error
in the neighborhood near that knot. (This is in contrast to the corresponding first, and especially,
the second derivative estimates which contain much larger errors.) If the second derivative of f*(z)
is everywhere slowly varying then (slightly) more accurate curve estimates can be obtained by
restricting the variation of the second derivative. This is at the expense of reduced flexibility to fit
curves that do have locally rapidly varying second derivatives.

The same considerations (see Section 2.0) that led to the desirability of piecewise linear ap-
proximations guide our approdch to piecewise cubic fitting. We seek a curve estimate whose func-
tion and first derivative values are everywhere continuous. Under that constraint we would like an
estimate that closely resembles the corresponding piecewise linear fit. In particular, we do not wish
to require, in addition, everywhere continuous second derivatives.

A simple modification of our basis functions (3) (used for piecewise linear fitting) leads to an
appropriate basis for the corresponding piecewise cubic approximation:

0 T < teo
Bi(z) = {qk(z—tk_)2+rk(r—?k—)3 lem << T < tes (17)

T -t tee <
with te_ < tp < tes-

Setting the coefficients g, and r¢ to
Ge = (2tep + Lo = 3 (tew = 1)’
"k=('2tk—t;¢+—tk-)/ffu-—tk—)" (13}
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causes Bi(z) (17) to be everywhere continuous and have continuous first derivatives. Outside the
interval tx. < < tg4+, Bi(z) is identical to the corresponding piecewise linear basis function
be(z) (8) with a knot at t;. Inside the interval Bg(z) is a cubic function whose average first
and second derivatives {over the interval) match those for the corresponding bi(z). The second
derivatives of of By(z) exhibit discontinuities at tx, and t,.. Far from the central knot location
tk, Bi(z) has the same properties as bi(z), so that both bases will have similar characteristic spans
(see Section 2.0). Close to the central knot (inside (tx—,ixk+;) Be(z) - an approximation to be(z)
with continuous first derivative.

Knot placement based on piecewise linear fitting (Sections 2.1 ~ 2.4) is used to select knot
locations for piecewise cubic fits. The resulting knot locations t; ---tx are used as tne central
knots for the cubic basis Bi(z)---Bg(z) (17). The side knots {tx-.tx+},1 < k < K, are placed at
the midpoints between the central knots. Let t(y) - --tx) be the central knots in ascending abscissa

value. Then

ty- = (fe) + te-1))/2

tm+ = (B + Heey)/2 (19)

for 2 < k £ K - 1. The extreme knot locations. t;, and ¢x_ are defined as in (19). The outer siae

knots are defined by

tay- =ty + z(1))/2

tiky+ = () + 2n)3/2 (20)

where z(;) and z(x) are respectively the lowest and highest sample abscissa values. If the knot
placement procedure happens to put a knot at z(;) (pure linear term in the model) then the
corresponding basis function is taken to be By)(z) = z — z(y).

The piecewise cubic curve estimate

K

flz)= a0+ Y akBi(z) (21)

k=1
is obtained by minimizing the ASR with respect to the coefficients ag---ax. [n the interior.
ty- < I < Yg)+. it is piecewise cubic with second derivative discontinuities at the midpoints
between the central knots #(q)+ = tk41)-. 1 £ & < A — 1. In the outer regions. z < #y)_
or r X tj+. the curve estimate is taken to be linear. This helps to control the high variance

associated with the extremes of the interval { “end effects™).
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Although the piecewise cubic fit seldom provides a dramatic improvement, it requires very little
computation (one additional linear least squares fit) beyond that required for the (piecewise linear)
knot placement. One can compare the GCV (6) (16) (equivalently. the ASR) for the piecewise
{inea.r and cubic estimates, choosing the one that is best. If a strong prejudice exists for continuous
first derivatives, then one might prefer the cubic estimate even if it provides a slightly poorer fit to

the data.

3.0 Additive modeling

The simplest extension of smoothing to the case of multiple predictor variables, X - -+ X, is the
additive model (2). Flexible additive regression has been the focus of considerable recent interest.
It is a special case of the projection pursuit regression model ( “projection selection”, Friedman and
Stuetzle, 1981). It also represents special cases of the ACE (Breiman and Friedman, 1985) and
generalized additive models (Hastie and Tibshirani, 1984, 1986). Stone and Koo {1985) éuggest
additive modeling based on a central cubic spline approximation, with linear approximation past
the extremes, and nonadaptive knot placement.

The smoothing procedure described in the previous section has a natural evtension to multiple

predictor variables. The piecewise linear basis functions analogous to (8) become
bi(z) = (Zjk) ~ te)” (22}

where k, 1 < k < K, labels the knots and j(k). 1 < j(k) < p. labels a predictor variable
correspanding to each knot. Each knot location ¢4 is associated with a particular predictor variable.
J(k), and all of the predictor variables provide eligible locations for knot placement. Additive
mmodeling in this context. can simply be regarded as a (univariate) smoothing problem with a
larger number (pN versus .V) of ordinate abscissa pairs. The forward/backward knot placement
strategy, minimum span (with pV replacing .V), and model selection criteria directly apply. as
do the updating formulae derived in-Section 2.3 (reinitialized to zero for each new variable). The

resulting piecewise linear model
K
f(1)=ao+zak(11fk)_tk}+ (231
k=1

can be cast into the form given by (2) with

.

fizh= Y azi-t)T 1<i<p. 124)

Jk)=1




Note that the means of the individual (predictor) variable functions (24) can be considered arbitrary
for purposes of interpretation.

The corresponding piecewise cubic basis (17) is constructed in a manner analogous to that
for the smoothing problem (p = 1). The only difference is that the side knots #(x)~, {(x)+ (19) are
positioned at the midpoints between the central knots (ti) defined on the same variable. The end
knots (20) are positioned using the corresponding endpoints on the same variable. The resulting

basis functions Be(zj(x)) define individual variable functions analogously to (24)
flz)= D awBu(z), 1<i<p, (25)

again with arbitrary means.

Although exceedingly simple. this method of additive modeling has some powerful character-
istics. The knot placement strategy considers each potential knot location in conjunction with all
existing knots on all the predictor variables - not just those defined on the same variable - when
dec.ding whether to add (or delete) a particular knot. At each point the forward stepwise strategy
decides (in a natural way) whether to increase the flexibility of an already existing variable curve
(24) (25) or whether to add another variable, either linearly or nonlinearly. Variable subset selec-
tion thereby occurs as a natural byproduct of this approach. Note that the smallest abscissa value
on each predictor variable is always made eligible for knot placement {irrespective-of the minimum
span value - Section 2.2) so that any predictor variable can potentially enter in a purely linear way.

The additive modeling strategy outlined above places no special emphasis on linearity. A
purely linear relationship in any variable is represented by one of the eligible knot locations (the
first) on that variable. One can (if desired) place such special emphasis by requiring that the first
knot entered for each variable be at its smallest value. The price paid for this is increased variance
in estimating some monotone relationships and dramatically increased bias against non-monotone
relationships.

Our strategy does, however, place some special emphasis on monotonicity. Monotone trends
will enter before somewhat stronger highly nonmonotone relationships. Also. there is a slight
preference for certain types of monotone trends. namely those that start with a small slope. These
can be approximated with a single knot as can a purely linear trend.

This method of additive modeling is invariant to the locations and individual spreads of the
variables. Translating or rescaling each of the variables by a (different) constant factor will, in
principle. not affect the solution. If, howaver, the predictcr variables have very large absolute loca-

tions (compared to their scales) and/or wildly different scales. there can be undesirable numericai
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consequences associated with the updating and least-squares fitting. In such cases (as with ordi-
nary linear least-squares regression) it is wise to center and/or rescale the predictor variables to
remove the large locations and/or wild scale differences before applying the modeling procedure.

The resulting solution is easily transformed back to the original variable locations and scales.

4.0 Confidence intervals

When attempting to interpret the individual predictor variable curve estimates, it is important
to have a notion of how far the estimate is likely to deviate from the true underlying (population)
conditional expectation. This can be quantified by the expected squared error

E[f7(z) ~ filzi)F = (f2(2:) = Efi(2:))® + Varfi(z;). (26)

Here f(z;) is the true population curve and fi{z;) is the estimate from the sample. The
expected values in (26) are over repeated samples of size .V drawn from the population distribution.
For linear (nonadaptable) procedures (knots fixed in advance) and homoscedastic errors (1). one
can estimate the variance term in (26) through standard formulae for the covariances of the a;
appearing in (24) and (25) and an estimate of the true underlying error variance, °. With adaptable
procedures such as ours this can be highly overoptimistic because it does not account for the
variability associated with the knot placement.

One way to mitigate this effect is t~ inflate &° to account for the additional degrees-of-freedom
used by the adaptive knot placement (total of three for each knot). Even this. however, does
not give completely satisfactory results. For example, the (constant) predictor variable curves
associated with no knots would be calculated to have zero variance. This is clearly not the case. In
addition, there is seldom reason to expect homoscedasticity. Even if one could accurately estimate
the variance it is, in any case, only one part of the expected-square-error. There is still the unknown
and potentially large bias-squared term in (26).

Bootstrapping (see Efron and Tibshirani. 1986) provides a means of estimating the variance of
the curve estimates (assuming only independence) and can give some indication of the bias as well.
This is, of course. at the expense of additional computing. However. the additive modeling proce-
dure described here is generally fast enough {see Section 2.3) to permit substantial bootstrapping,
and honest uncertainty estimates are usually worth it.

The basic idea underlying the bootstrap is to substitute the sample for the population and
study the behavior of estimates under repeated samples of size .\ drawn from it. In particular. we

can estimate the expected squared error {26) by
Elfi(z) = fulzi]* = Epifiz - £%2,) (2T
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Here Epg is the expected value over repeated “bootstrap” samples of size .V drawn (with replace-
ment) from the data, and ffa) is the (ith) curve estimate for the bootstrap samples. In fact, one
can approximate the distribution of f7(z:) — fi(z:) by that of fi(z:) - fl-(E)(:.').

Our goal is to take maximal advantage of the flexibility of the bootstrap to estimate asymmetric
intervals about the curve that reflect the potentially asymmetric nature of the distribution of
fr(z:) = fi(z:). This can be due to either asymmetric error distribution or biased curve estimates
(or both). In addition, we wish our interval estimates to reflect (probable) heteroscedasticity of the
errors. To this énd we repeatedly draw bootstrap samples (of size N with replacement) from the
data. For each such sample we perform the same modeling procedure as was applied to the original
data, thereby obtaining a set of curve estimates f}m(r‘-),l <t £ p. At each (original data) value.

z;, two averages are computed:

el(zi) = ESfi(zi) - £ Pz (28a)
el (zi) = ES[fi(zi) - £P(z) (280)

The first average (28a) is over those bootstrap replications for which f,(z;) - f,(B)(z.') > 0, and the
second (28b) is over those for which fi(z:) — f(®){(z;) < 0. The individual averages so obtained
at each value of z;,ei(z,-), are then smoothed against z; using a simple {constant span) running
average smoother. The resulting smoothed estimates éi(z,-) are then used to define confidence

intervals about the original data estimate fi(z;):

FE(z) = flzd) £1/Eh(z0). (29)

In addition to assessing the variability of the individual predictor variable curve estimates
filz:), it is important to obtain a realistic estimate of the future prediction error. FPE, of the

entire additive mode] {2),

P
FPE =ElY =Y f(z}.

=1
Here the expected value is over the population joint distribution of the response and predictor
variables. Sample reuse techniques such as bootstrapping ( Efron. 1383) and cross-validation (Stone.
1974) provide a variety of such estimates. Of these. the so-called “632-bootstrap™ has shown
superior performance in several simulation studies {Efron. 1953, Gong. 1982, Crawford. 1936).

This estimate is a convex combination of two different estimates

FPEy;gQ = 0.632FPE\B+0‘368A$R‘ 130
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The second, ASR, is the average squared residual corresponding to the original data fit. The first
estimate, FPE\ g, is obtained from bootstrap sampling. As a consequence of the random nature of
selecting observations for the bootstrap samples, a (different) subset of the observations will fail to
be selected to appear at all in a particular bootstrap sample. On average. 0.368 .V data observations
will not contribute in this way to a bootstrap sample. Each time an observations does not so appear,
its prediction error (squared) is computed, based on the mode! estimated from the corresponding
bootstrap sample from which it is absent. The quantity F PE\ g is the average of these prediction
errors over all such left out observations throughout the entire sequence of bootstrap replications.

The bootstrapping procedure outlined above simulates situations where the response and pre-
dictors are both random variables sampled (independently) from some joint distribution. That is.
if another sample were to be selected, different values of the predictor variables as well as the re-
sponse would be realized. Therefore, the resulting confidence interval and FPE estimates are not
conditional on the design (realized set of predictor values). This is appropriate in most observa-
tional settings. There are situations. however, where the design is presumed to be fixed. That is,
every replication of the experiment results in an identical set of values for the predictor variables
and only the responses are random. Bootstrapping (as outlined above) will tend to over estimate
both the confidence intervals and the FPE in fixed design situations ijust as estimates conditioned
on the design underestimate them for observational settings). Therefore, if the design is fixed these

bootstrap estimates should be regarded as conservative.

5.0 Simulation studies and data examples

In this section we compare the technique outlined in the previous sections i referred to for identi-
fication as the *TURBO” smooth/model) to some other methods commonly used for smoothing and
additive modeling through a limited simulation study and application to data. The goal is to identify
those settings in which this procedure can be expected to provide good performance when compared
to existing methodology. For the smoothing problem {p = 1) we compare with smoothing splines
(Reinsch, 1967), a popular nonadaptive local averaging method. and a recently proposed adaptive
span smoother, “SUPER SMOOTHER". (Friedman, 1934). With smoothing splines the rough-
ness penalty was automatically chosen through generalized cross-validation (Craven and Wahba,
1979). For additive modeling we make comparisons with the projection selection/ACE approach
using SUPER SMOOTHER. In all examples, the knot placement increment is given by 1141 with

a = 0.05.




5.1 Smoothing pure noise )

This is a simulation study to compare how well these three smoothers estimate a constant
function in the presence of homoscedastic noise. That is, how much structure do they estimate when
there is no underlying structure in the population? A set of response-predictor pairs (z;,y;), 1<
i < N, were generated, with 0 £ z; < 1 randomly sampled from a uniform distribution, and the
y; drawn from a standard normal distribution. Figures la, 1b, and lc show a scatter plot of one
such sample (N = 20) with the corresponding TURBO, smoothing spline, and SUPER smooths,
respectively, superimposed. The TURBO curve estimate is seen to be a constant (no knots) equal
to the sample response mean. The smoothing spline and SUPER SMGCOTHER estimates show a
gentle dependence on z.

Since one cannot discern expected performance based on one realization, we study average
performance over 100 such realizations, for each of V = 20 and V = 40. The results are shown
in Figures 1d and le respectively; for the larger sample size the errors are generally smaller. but
the qualitative comparisons are the same. [n both cases the average absolute error is plotted as
a function of abscissa value. {(For the TURBO smoother, the piecewise linear and cubic smooths
give almost identical results.) The TURBO smoother (solid line} is seen to give uniformly smaller
average error than the other methods, though of course this overall performance is mostly due
to the relative amount of smoothing chosen (automatically) by the method rather than to the
choice of method itself. Perhaps of more interest is the uniformity of the error across the range
of observations; for this problem in particular, TURBO seems not to exhibit large error near
the ends of the interv;J (“end effects”) associated with the other methods. The especially poor
performance of SUPER SMOOTHER (dashed line) in very high noise environments has been
noted before (Breiman and Friedman, 1983). It is also known. as most easily seen by considering
the “equivalent kernel” formulation discussed by Silverman {1934}, that the smothing spline will
have higher variance near the ends. Also, the smoothing spline can be affected by bias eflects if the
true underlying curve does not satisfy appropriate boundary conditions (see Rice and Rosenblatt.
1983); Agarwal and Studden (1980) showed ‘that these end bias effects are not felt if one uses
piecewise polynomial models with fixed knots. but since the underlying model is constant in thi-
case. the bias effects are not relevant. It is clear that further theoretical work will be required to

understand TURBO's apparent improvement in boundary behavior over other methods.
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5.2 Smoothing a monotonic function
Our next example increases the complexity of the problem slightly. Here V = 25 response-

predictor pairs (r;, y;) were generated according to the prescription
yi = exp(6zr;) + <, © o3

with the z; randomly drawn from a uniform distnibution in the interval 0.1} and the ¢, are drawn

from a (heteroscedastic) normal distribution

 ~ N(0.[100(1 = )]*). i32)

In this example the curvature of the true underlying conditional expectation is increasing with
abscissa value and the noise is heteroscedastic with standard deviation decreasing with abscissa
value.

Figure 2a shows a scatter plot of such a sample superimposed with both the piecewise linear
and piecewise cubic TURBO smooths and the :rue underlying conditional expectation. exp(6z 1.
Figure 2b and 2c show the corresponding smoothing spline and SUPER smooths. In this case.
the piecewise cubic TURBO estimate gives a slightly better fit than the piecewise linear ro the
sample (as weil as the true underiying curve!. The smoothing spline estimate exhibits considerable
variability in the high noise region and the SUPER SMOOTHER somewhat less.

In order to study expected performance. 100 replications « 25 observations each; were zenerated
according to (31).(32), and fit with the three smoothing methods: piecewise cubic TURBO model.
smoothing splines, and SUPER SMOOTHER. Figure 2d plots their average absolute error. firi—
expt6r:l. as a function of abscissa value. r. In the Ligh noise region z < 1.2 both the smoothing
spline (dotted line) and SUPER SMOOTHER tdashed linej exhibit large orror associated with
the high variance of their estimates. [n the iatermediate region 1.2 < = < 0.9 both the TURBO
sso1id liney and SUPER smoothers have cemparabie performance. In the low noise high enrvatiure
axtreme, £ > 0.9, ajl three methods produce considerable increased error hias. wirh the SUPER
SMOOTHER degrading “he least. Over most of “he region the nonadaprable: smoothing spline
method gives relatively poor perfarmance. This might he axpected sinee harh the survatire and
nore iovel are varving, rhereby causing 4 singio span vable To Be ess appropriate.

3.3 A difficult smoothing problem

Our nal smoothing exampie (v afelioed Soemmniade e mecar. cole anpact Gata in Silverman
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distribution in the interval {—0.2,1.0] and the y; given by

e z; <0
bi = sin{2r(l - z;)]+¢; U<z; <1

with the z; randomly generated from
¢, ~ V[0, max’(0.05. z,)].

The second derivative of the underlying conditional expectation changes sign four times and is
infinite at z = 0. The standard deviation of the additive noise is small and constant for X < 0.05,
and then increases linearly with z. Figure 3a shows a scatter plot of such a sample. Figure
3b superimposes the piecewise linear and cubic TURBO smooths along with the true underlying
conditional expectation. Figures 3c and 3d show respectively the-corresponding smoothirg spline
and SUPER SMOOTHER smooths. All but the piecewise linear estimate have a downward bias
at the derivative discontinuity. Both TURBO smooths have a downward hias at the minimum.
whereas the smoothing spline and SUPER smooths have an upward bias. The smoothing spline
estimate exhibits considerably more variation in the higher noise regions. The piecewise cubic
TURBO smooth again gives a slightly better fit to the data than does the piecewise linear.

Asin the previous examples, we compare expected performance of the three methods over 100
replications of 50 observations each. Figure 3e shows the average absolute error (from the true
underlying conditional expectation) for the piecewise cubic TURBO smooths. smoothing splines.
and SUPER SMOOTHER. In the higher noise regions (.X > 0.251 the TURBO and SUPER
smoothers are seen to have comparable error, but in the lower noise high curvature region (z < 0.25)
the SUPER SMOOTHER exhibits about 20% higher accuracy. It has considerably less bias at
the derivative discontinuity and the minimum points. Smoothing spiines exhibit relatively poorer
performance over almost the entire interval. Again. this might have been expected since this is
a highly heteroscedastic situation with varving curvature. Nnnadaptable smoothers must choose
a compromise smoothing parameter for the entire region, wereas the adaptable procedures can

adjust the span to try to account for such effects.

5.4 Additive modeling with pure noise.

Since it is as important for a method to not find predictive structure when it is absent. as it is
to find it when present. we first study the performance of our additive modeling procedure when
rhere is no predictive relationship b- tween the response and predictors. Two <imulation -<periments

were performed. In the drst, (00 replications of a sample of <ize N = 70 were generatea. The
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responses were drawn from a standard normal distribution. There were . = 10 predictor variahlae
each independently drawn from a uniform distribution in the interval [0.1]. The TURBO modeling
procedure was applied to each of these 100 replicated samples. In 67 replications no knots were
placed on any of the ten predictors. The estimated response function was taken as the sample
re<ponse mean. In 24 replications one knot was placed and in 9 cases two knots were used. Thus,
two thirds of the time the TURBO model reported no predictive relationship. In the rest of the
cases it reported a small one. Table 1 summarizes the distribution of both the sample multiple
correlation ( R?) between the response and the estimated model. and the root mean squared distance
(ESE)'/? of the estimated model from the truth. f(z, - -z,9) = 0.

For comparison we also applied to these data sets the projection selection procedure { Friedman
and Stuetzle, 1981), or equivalently, the ACE pri.cedure with the response transformation restricted
to be linear (Breiman and Friedman, 1985), using the SUPER .IOOTHER |Friedman. 1984).
The corresponding distribution of R? and (ESE}'/? are also summarized in Table 1. In contrast
to the TURBO model, this method is seen to seriously overfit the data as reflected in the high
values of both quantities. The propensity of ACE (based on the SUPER SMOOTHER) to overfit
in low signal to noise situations was discussed by Folkes and Kettenring (1985}, and Breiman and
Friedman (1985).

A second simulation experiment was performed, using the same setting but increasing the
sample size of each replication to .V = 100. The TURB® model placed no knots 63 times. The
frequency”of one through five knots were, respectively 26, 6. 3. 1. 1. The corresponding distribu-
tions for both methods are shown in Table 1. The increased sample size is seen to improve the
performance of both methods but the qualitative aspects of their comparison are the same as with
the smaller (.V = 530) sample size. The TURBO modeling procedure is seen to be fairlv conserva-
tive. It should be noted that the tendency of the ACE method to drastically overfit in low signal
to noise small sample settings is not a fundamental property. but is mainly a consequence of its

implementation using the highly flexible SUPER SMOOTHER.

5.5 A highly structured additive model

This example is intended to contrast with the previcus one. As in the previous example shere
are p = 10 predictor variables each independently generated from a uniform distribution on 0,1
Two simulation experiments of 100 replications each were performed with V = 50 and V = 100.

The response variables were generated bv




with the ¢; independently drawn from a standard normal distribution. The function f* was taken

to be

4

- _ 41X
(X1 X)) = 0.1e*r 4 m

+3.X: + 2.4 + X,

In this case the signal to noise ratio (standard deviation of f*) is 2.47. The true underlying condi-
tional expectation is additive in the ten predictor variables. The relationship is highly nonlinear in
the first two, linear with decreasing strength in the next three, and constant (zero) in the last five.

Figures 4a - 4e show the piecewise linear and cubic curve estimates (24), (25) for the first five
variables in the first replication of .V = 50. Also, superimposed on the figures is the true underlying
function for the corresponding variable (solid line), and with the errors ¢; added to it {dots). As can
be seen the TURBO model placed one knot on X, two on X3, and one each on variables X3, X,
and Xs. No knots were placed on the last five predictor variables. Both the piecewise linear and
cubic models fit the data with R? values of 0.93. The root mean-squared error of the piecewise
linear model from the true f*(X; .- X4) wa.s.().-ts. whereas for the corresponding piecewise cubic
it was 0.47.

More important than performance on a single sample is average performance over 100 inde-
pendent replications of this situation. Table 2 summarizes the results for piecewise cubic fitting.
The results shown in Fig. 4 (based on the first replication of the 100) are seen to be somewhat
more favorable than those on the average. A second simulation experiment with 100 replications of
.V = 100 observations each was also performed. These results are summarized in Table 2 as well.
The ACE/SUPER SMOOTHER procedure was applied to the same sets of replicated data with
the results also shown in Table 2.

Comparing the results, the TURBO modeling procedure is seen to exhibit substantially better
performance in terms of root mean squared error. The effect is. however. less dramatic than in
the pure noise case. On average, ACE/SUPER SMOOTHER fits the data sample 3.7 times more
closely than the TURBO model for .V = 50. For .V = 100 this factor is 1.3. This overfitting results
in an increased median modeling error of 16% for .V = 50 and 30% for V' = 100. On the other hand.
the TURBO model has a tendency to be conservative and under fit the data. producing estimates
that are sometimes overly smooth (too few knots). This has an interpretational advantage and a
predictive advantage when the curvature variation of the true underlving conditional expectation
is reasonably gentle. This example, however, simulates a situation in which that variation is fairlv
dramatic and the advantage of TURBO modeling procedure tin terms of expected squared error)

is thereby somewhat reduced.




5.8 Molecular quantitative structure - activity relationship.

We illustrate here TURBO modeling on a data set from organic chemistry (Wright and Gam-
bino, 1984). The observations are 36 compounds that were collected to examine the structure
activity relationship of 6-anilinouracils as inhibitors of Bacillus subtilis DNA polymeraze III. The
four structural variables measured on each compound are summarized in Table 3. The response
variable is the logarithm of the inverse concentration of 6-anilinouracil required to achieve 50% in-
hibition of enzyme activity.

TURBO modeling applied to these data placed four knots: one on the first variable. two on
the second, and one on the third. The e? = 1 - R? for the piecewise linear fit was 0.12. while for the
piecewise cubic it was 0.11. The corresponding 632-bootstrap estimates (30) were 0.23 and 0.22.
Figures 5a-3d show the piecewis.e cubic curve estimates f;(z;),! = 1.4, along with the bootstrap
confidence intervals (29). The data points (dots) on the figures are the scaled residuals from the fit
added to the curve at each abscissa value (component plus residual plot). The scale factor is the
square root of the ratio of the 632 bootstrap estimate to the resubstitution e*. The curve estimates
on the first three predictors are all seen to be fairly nonlinear, especially the second one.

ACE/super smoother was also applied to these data. The resubstitution e’ was 0.054 while
the 632-bootstrap estimate was 0.29. As in the simulated data example (Section 4.5). ACE/Super
smoother is seen to fit the data more closely than the TURBO model. but the resuiting overfit

results in inferior future prediction error in this case.

5.7 Air pollution data.

This data set consists of daily measurements of ozone concentration and eight meteorological
variables for 330 days of 1976 in the Los Angeles basin. Table 4 describes the variables. These
data were introduced by Breiman and Friedman (1985) to illustrate the ACE procedure. They
were also analyzed by Hastie and Tibshirani (1984) using their Generalized Additive modeling
method (see also Hastie and Tibshirani, 1986). In contrast to previous examples this is a large
(.V=330). complex. and not very noisv data set. One might therefore expect that the simple
TURBO modeling procedure would be at a disadvantage when compared to the more sophisticated
approaches that have been applied to these data.

Applyving the TURBO model resulted in ten knots being placed: one each on variables 1. 1. 3.
and 6. and two each on variables 3. 3. and 9. The resulting resubstitution ¢* was 0.20 for both the
piecewise linear and cubic fits. The corresponding 632-bootstrap estimates i 20 replications) were

0.2t for both. The piecewise cubic individual variable curve estimates. fiz,1.1 < ¢ < 9,123} are

-
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shown in Figs. 6a-6i, along with their bootstrap confidence intervals (29) and (scaled) residuals.

Exact comparison with the ACE results in Breiman and Friedman (1985) is not possible since
they applied ACE in a mode that estimates an optimal (minimum e®) response transformation as
well. The resulting respon-e estimate was, however, not too far from the identity function so that a
rough comparison is possible. They applied a variable based forward stepwise procedure, selecting
five variables. Their resubstitution e for the optimal response function was 0.18. The variables
that were selected and the corresponding curves are fairly consistent with {but not identical to) the
TURBO model results. Generally, the TURBO curves are a bit simpler than the corresponding
ACE/SUPER smoother estimates. Since bootstrapping or cross-validating the forward stepwise
ACE procedure would be prohibitively expensive, no estimate of {honest) future prediction error
could be given.

Hastie and Tibshirani (1984) also analysed these data. Their Generalized Additive Modeling
procedure as applied in this setting is equivalent to the ACE method with the response function
constrained to linearity. Therefore we can make direct comparison with their results. Hastie and
Tibshirani did not employ SUPER SMOOTHER. but rather a nonadaptable local linear smoother
with constant span. With all nine predictors in the regression function they obtained an e* of 0.20.
With the same subset of variables as used by Breiman and Friedman (19835) the e? was 0.22. Hastie
and Tibshirani (1986) provide a method of estimating the equivalent degrees-of-freedom used by
their fitting process. This estimate accounts for the flexibility associated with the resulting smooths
but does not account for the (nonlinear) span selection and variable subset selection process. They
report 21.8 degrees-of-freedom for their fit with all variables and 12.4 for the five variable subset.
The corresponding degree-of-freedom count for the TURBO fit would be 11 {constant term plus

coefficients for ten knots).

6.0 Discussion

The examples of Section 3 indicate that the smoothing method outlined in Section 2. and
the corresponding additive modeling procedure described in Section }. are competitive with the
techniques to which they were compared. They seem to have substantial advantage in situations
with low sample size and high noise. where the underlyving functions are fairlyv simple. In this context
a simple function is one that can be reasonably well approximate(i by a piecewise linear function
with few (judiciously placed) knots. This was the case in the examnples of Sections 3.1, 3.2, 3.4, 3.3,
and 5.6. Our procedures appeared to have similar performance 1o the corresponding competitors

in large sample low noise situations. again with fairly simpie underlving funcrions  Section 3.7

2R




The example in Section 3.3 represented a moderate sample size situation with both high and low
noise regions (strong heteroscedasticity) and a complex underlying function. In this particular case
SUPER SMOOTHER appeared to perform somewhat but not dramatically better.

FORTRAN programs implementing the procedures herein described are available from the

authors.
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Table 1

Comparison of TURBO and ACE additive modeling of pure noise (Section 5.4). The 5. 50.

and 95 percent points are given for the distribution of the multiple correlation R? (resubstitution).

and the root expected squared error (ESE)!/2.
R? (ESE)/?
.05 3 .95 .05 .3 .95
N =30 '
TURBO 0.0 0.0 0.21 0.02 0.13 0.50
ACE 0.74 0.91 0.97 0.68 0.33 1.00
Y =100
TURBO 0.0 0.0 0.12 0.008 0.12 0.41‘
ACE 0.49 0.70 0.36 0.33 069 0.39
Table 2

Comparison of TURBO and ACE additive modeling in a higher signal to noise situation

(Section 5.53). The 3, 50. and 95 percent points are given for the distribution of the multiple

~

correlation R? (resubstitution), and the root expected squared error (ESE)!/*.

R? (ESEN'/?
05 3 95 03 5 95
V =30
"TURBO. 0.79 0.86 0.93 0.34 0.75 0.99
ACE 0.97 0.99 1.0 0.68 0.87 1.00
N =100
TURBO 0.84 0.37 0.91 0.31 0.48 2.62

ACE 0.93 0.96 0.99 .60 n.72 0.35
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Table 3

' Variables associated with molecular quantitative structure-activity data example (Section 5.6).
[ X; - meta substituent hydrophobic constant

X, - parasubstituent hydrophobic constant

X3 - group size of substituent in meta position
‘ X, - group size of substituent in para position
I Y - logarithm of the inverse concentrations of
i 6-anilinouracil required to achieve 50%
; inhibition of the enzyme.
3

Table 4

Variables associated with the air pollution data example (Section 5.7).

X1 - Vandenburg 500 millibar height

X: - humidity

X3 - inversion base remperature :
Xy - Sandburg Air Force Base temperature

Xs - inversion base height

Xs - Daggot pressure gradient

X: - wind speed

Xs - visibility

X9 - day of the vear

¥" - Upland ozone concentration
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Appendix 6

A smoothed EM algorithm for the solution of

Wicksell’s corpuscle problem.
by

J. D. Wilson
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Appendix 7
An evaluation of the ICM algorithm for image reconstruction.
by

R. H. Glendinning




An Evaluation of the ICM Algorithm for Image Reconstruction
R. H. GLENDINNING
School of Mathematical Sciences,University of Bath, Bath BA2 7AY, UK.

We examine the properties of Iterated Conditional Modes (ICM) estimation for

a number of synthetic binary images using simulation.

KEY WORDS : [ll-posed problem;image reconstruction,ICM; Simulated

Annealing ;smoothing parameter; neighbourhood system;Monte-Carlo.
1. INTRODUCTION

In the last few years considerable interest has been shown in the problems
posed by the analysis of images corrupted by random noise. The reconstruction
of such images leads to special difficulties as it is an ill-posed problem ( in the
sense described by O’Sullivan, 1986 ). Typically the reconstruction of an array
of pixels will have as many parameters as cbservations. A number of tech-
niques have been proposed which solve ill-posed problems by restricting the
class of admissible solutions,see Marroquin Mitter & Poggio (1987). This is
achieved by introducing a priori knowledge about admissible solutions.

" Much interest currently centres on techniques which incorporate knowledge
about the underlying image using Bayesian methodology, See Geman & Geman
(1984) ; Kashyap & Lapsa (1984). These techniques assume that the underly-
ing scene can be adequately described as a realisation from a prescribed Mar-
kov random field. Motivated by this approach Besag (1986) intmduf:cd a tech-
nique known as [ITERATED CONDITIONAL MODES (ICM). This iterative
procedure incorporates knowledge about the underlying scene by the choice of

a ‘neighbourhood system’ ,weight function and smoothing parameter. Broadly
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speaking this method exploits the tendency of adjacent pixels to have the same
colour. A similar approach based on spatial auto regression is described in
Woods,Dravida & Mediavilla (1987).

In this paper we use simulation to evaluate the performance of ICM in
reconstructing binary ( black-white ) images. The reconstruction of binary im-
ages is of considerable practical importance as many problems in object recog-
nition and manipulation fall into this category. For simplicity we suppose that
the underlying scene can be partiioned into an array of pixels ( picture ele-
ments ) which are uniquely coloured black or white. At each pixel we observe
a signal which depends on its colour. We consider the case where each signal
is additively corrupted by independent normally distributed noise. These are
highly unrealisic assumptions as they ignore the problems associated with
mixed pixels, signal spread etc. However we believe that the study of ICM in
this simpliﬁcd setting will give valuable insight into its behaviour in more com-
plex situations.

In section 2 we describe the basic ICM algorithm and recall some basic
facts about Markov random fields. The synthetic scenes used in this study are
described in section 3. In section 4 we examine the influence of the neighbour-
hood system and weight function on the quality of our reconstructions. The
choice of smoothing parameter is discussed in section 5. We are particularly in-
terested m identifying properties of the underlying scene which influence the
value given to B (the smoothing parameter). Some distributional properties of
ICM reconstructions are discussed in section 6. The numerical performance of
the basic ICM algorithm is discussed in section 7. We describe several
‘modifications of the pasic algorithm which enhance its efficiency. Our findings
are summarised in section 8.

The prcolem of restoring corrupted images has a long history in the image
processing literature, where a number of techniqueé of Qarying sophistication
have been suggested, see Bovik,Huang & Munson (1987) or Rosenfeld & Kak

(1982). A comparison of ICM with the multitude of competing techniques is




not attempted in this paper.

2, THE ICM ALGORITHM AND MARKOYV RANDOM FIELDS

Let W be a rectangular window in the plane which is partiioned into an
(m x n) array of rectangular pixels of equal size. We assume that each pixel
can be uniquely coloured. The available colours are labelled (1,2,...,¢). In this
paper we restrict attention to scenes with two colours which we call black and
white. The colour of the (i,f Y4 pixel is denoted by x;j. We refer to (x,-j) as the

true or underlying scene. Suppose we observe an array of signals (y;;) generat-

Yij = W) + &, 2.1)

where (g;;) are independent and identically distributed random variables and
H(.) is a functon of x;; only. The object of image analysis is to estimate the
true or underlying scene (x;;) from (y;;). In this paper we consider real-valucd
signals only. Models of this form are not canonical in the study of corrupted
images and the reader is referred to Besag (1986) for a discussion of alternative
models.
At first sight the natural way of estimating (x;;) is by maximum likelihood.
In this approach we find (x;;) which maximises
m n
IC@;) 1)) = ‘1:{]1;[1] O Lxij).- 2.2)
where f (y;; 1x;;) is the fully specified density function of y;; conditional on x; -
The estimates produced by this approach are usually unsatisfactory as (2.1) has
as many parameters (x;;) as observations. To improve the situation Geman &
Geman (1984) and Bes}ag (1986) introduce information about (x;;) into the
estimating procedure. This is achieved by regarding (x;;) as a realisation from
a Markov random field ( MRF ) . A detailed account of the salient features of
MRF’s can be found in Geman & Geman (1984) ; Besag (1974,1986) or

Suomela (1976). We briefly outline the main properties of MRF’s relevant to
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the discussions in this paper.

For each pixel (i,j) we associate a set of pixels F; ;) , not including (i)
called the neighbourhood of (ij). The collection of sets (F; ;)) is called a
neighbourhood system and satisfies the condition
@.q)eF; e J)eF p )

Then (x;;) is a MRF if

(1) Py | (Bpg £ #i.q%))) = P (x;j 12,0.2.q) € F i),

) P((X.‘j)) > 0,

where P((x,-j )) is the probability associated with the realisation (i) Condi-

. tons 1 and 2 impose severe restrictions on P (.). Valid forms of P (.) are given

by the Hammersley-Clifford Theorem, see Besag (1974) or Suomela (1976).
We follow Geman & Geman (1984) and adopt a Bayesian approach where

we estimate (i) from its posterior distribution
LG i DP ((x4)). (2.3)

A plausible estimate of (x,-,-) is the value of (x;;) which maximises (2.3). This is
the MAP estimate of (x;;). Geman & Geman (1984) use simulated annealing to
maximise (2.3). Van Laarhoven & Aaris (1987) give a comprehensive
description of simulated annealing and its application to image analysis. Note
that Greig,Porteous and Seheult, in the discussion of Besag (1986) show that
the MAP estimate of a binary scene can be calculated exactly. It is not known
whether the MAP estimator has any desirable properties in this context.

Besag (1986) introduces an alternative estimator of (x;;) known as

ITERATED CONDITIONAL MODES (ICM). This algorithm converges to a

"local maximum of (2.3). Let (£;j) be the current estimate of (x;;). For each

pixel we find the value of x;; which maximises
SO lxp)P (xi 1(£;), ‘ (2.4)

where P(x,»]» l(,f,-j)) depends on the neighbours of (i,j) only. Consider an exam-
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ple. Let (x;;) be a binary scene and (g;;) an array of independent normally dis-
tributed random variables with zero mean and variance o2, We represent our
knowledge of (x;) by a MRF with neighbourhood system
(F  jy=(G =1,/ +14),(i j =1),(i j+1))) and conditional probabilities

exp(Bu;; (k)
exp(Bu;; (0)) + exp(Buy;(1)) '

Pxj=k | (xpqp#i g %)) = k=0,1, 2.5)

where the weight function u;; (k) is the number of neighbours of x;; with colour
k. The vaiuc of x;; which maximises (2.4) minimises

QeA My - wex;))? - Bay; (xi;)s 2.6)
where d;;(x;;) is the number of neighbours of (i.j) which have colour x;;
under the current estimate (fij). We call  the smoothing parameter. The exten-
sion of (2.6) to non-gaussian noise is immediate.

Notice that (2.6) is in the form of a penalised likelihood and may be inter-
preted in this way without recourse to Bayesian arguments. Note that ICM and
MAP are not equivalent for most scenes. Typically smaller values of B ( rela-
tive to ICM) are required for MAP, see Greig,Porteous and Seheult,in the dis-
cussion of Besag (1986). The relationship between techniques like ICM and

other regularisation procedures is discussed in Titterington (1985).
3. DESCRIPTION OF THE SIMULATION STUDY

Seven scenes of varying complexity were constructed by partitioning the
unit square into 10* square pixels of equal size. The colour of each pixel was
assigned to the colour of its mid-point. In this study we use black and white
scenes only.

To identify properties of ICM more easily we restrict attention to simple
synthetic scenes which cover a small alphabet of forms rather than use naturally
occurring images. Five simple geometric scenes are displayed in figures 1 to 5.

The remaining scenes, MRF2 and MRF3 ( figures 6 and 7 ) are realisations
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from a Markov random field with prescribed number of black pixels (approx
50%). MRF2 and MRF3 were constructed using the algorithm described in
Cross & Jain (1983). Notice that we are sampling from the conditional distribu-
tion of the prescribed MRF. We believe that realisations constructed in this way
capture much of the local structure of the unconditional model. In the next sec-
tion we describe three Markov random fields, ( Models LII and IOI) which are
commonly used in this context. MRF2 is drawn from Model II with $=0.5 and
MRF3 from Model III with B=0.75.

We constuct an array of signals (y;) using (2.1) with
H(black)=1 , W(white =0 and (g;;) an array of independent normally distributed
random variables with zero mean and variance 62 The maximum likelihood
reconstruction is calculated and used as the initial state for the ICM algorithm.
This iterative procedure is terminated after twelve iterations. Typically conver-
gence occurs after six iterations. This process is repeated fifteen times for each
combination of parameter and underlying model. The efficiency of this algo-
rithm is discussed in section 7. |

Many criteria can be used to evaluate reconstructions. Essentially its choice
depends on the image characteristics of greatest interest. In this paper we use
the number of misclassified pixels as an appropriaté measure. The suitability of
this criteria has been the subject of much recent debate, see the discussion of
Besag (1986). We point .out the limitations of this criteria where appropri-

ate.

4. THE CHOICE OF MODEL.

In this section we examine the effect of choosing three different weight func-
tions in (2.6). The choice of B is discussed in section 5. In a Bayesiaﬁ frame-
work we are modelling our knowledge of the uncorrupted scene by a MRF with

prescribed structure. Cross & Jain (1983) show that simple MRF's can

Figs 1.7

here
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generate a wide variety of binary scenes. The.problem of choosing suitable
MRF’s to tmodel specific scenes is not well understood,see Kashyap &
Chelappa (1983) , Enting & Welberry (1978) and Pickard (1987). The last two
authors discuss parameter estimation for Markov random’ fields. An additional
complication arrises when our knowledge about the underlying scene is impre-
cise or difficult t» model by a MRF. The success of this approach rests on the
assumption that only certain modest properties of our ‘prior’ are important.
Some tentative observations on the robustness of ICM reconstruction to model
specification are given in sections 4 and 5.

In this section we use three different MRF’s to describe our knowledge
about the scenes presented in figs 1 10 7. We examine the misclassification rate
achieved by ICM using each model and several values of the parameter 3. The
models used are as follows:

MODEL I : A first order neighbourhood.

Fjy= CA=17)3+1,7),G J+D),3,j-1)).

- - exp(Bu;; (k)) .
P(xj=k |F jy) = <o By O)) + cxp(Big (1) k=0,1. @1
where
upq(k)=1 , when (p,q)eF;, and x,4 =k, (4.2)

and zero otherwise.

MODEL II: A second order neighbourhood.

Fijy = CU=1j+D,G+1j+D,G=1,j=D),6+1,j-1),
(1—1,1),(1,j+1),(‘+1vj)!(l ’J—I))

P (x;j=k \F ; ;)) is given by (4.1) and (4.2).
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MODEL I : As for IT with down weighted diagonals. F ;) as for the
previous model and P (x;;=k |1 F; ;)) given by (4.1) with

Upg k) =1 , (P.g)e((+1,/)-1,j) J+1)30,j=1)) and x,, =k.
upq (k) = 2-% ’ (P q )3 ((i -1'j+1)v<i+19j-1)!(i +1'j+l)v(i-lfj-l)) and qu =k
Upa (k) = O otherwise. 4.3)

There are conflicting opinions as to whether models should be modified for pix-
els adjacent to the windo“(,sce Ripley (1984). In this study we use the
unmodified models LII and III. The effects of modification appear small rela-
tive to the standard errors encountered in this study. Cross & Jain (1983) show
that models like LIl and III can be used to construct a wide variety of binary

scenes.

TABLE I

Comparison of models I, I and II
Smallest average percentage of misclassified pixels
B taking values in (0.25,0.5,0.75,1.0,1.25,1.5) for Models II and III
taking values in (0.5,1.0,1.5,2.0,2.5,3.0) for Model I
The standard error of this estimate is given in brackets

c*=0.5 ML 15.87
Model
Picture I I I
BCIR 2.24 0.07) 0.55 (0.04) 0.60 (0.04)
CROSS 2.66 (0.05) 1.00 0.07) 0.98 (0.06)
TWO 2.40 (0.09) 1.11 (0.05) 0.97 (0.06)
MANY 3.94 0.10) 241 (0.07) 2.27 (0.08)
VMANY 8.40 (0.13) 7.11 (0.10) 7.24 (0.10)
MRF3 6.81 (0.07 492 (0.09) 498 (0.10)
MRF2 9.5 _ (0.14) 7.85 (0.09) 7.98 (0.09)
‘=10 ML 30.85
Model
Picture I I1 . I
BCIR 6.33 0.16) 1.32 0.07) 1.32 (0.05)
CROSS 6.85 (0.22) 2.07 (0.12) 2.04 (0.10)
TWO 6.88 (0.13) 2.55 (0.08) 2.41 (0.08)
MANY 8.84 0.15) 4.52 (0.16) 4.55 0.12)

VMANY 1511 (0.22) 13.44 (0.13) 1292 (0.17)
MRF3 12.13  (0.16) 8.16 (0.19) 8.09 (0.17)
MRE2 1492  (0.20) 11.40 (0.23) 11.34 (0.22)




Each scene described in figs 1 to 7 is reconstructed using models LI and
I with various values of % and B. For models II and III we find the value of
B in the set (0.25,0.5,0.75,1.0,1.25,1.50) which gives the smallest average
misclassification rate. For model I we consider values of B in the set
(0.5,1.0,1.5,2.0,2.5,3.0). We choose different values of B for model I as there
is strong empirical evidence that the ‘optimal’ value of B lies in this range for
the scenes considered. In Table I we display the smallest average
misclassification rate for 0% = 0.5 and 1.0 . Similar results were obtained using
different values of o2. Notice that ICM is superior to the ML estimate for all
scenes. It is readily apparent that model I is vastly inferior to II and I for all
scenes considered. Model III is marginally superior to model II in the majority
of the scenes. In their study of edge penalties Brown and Silverman (1987)
present an argument which supports the use of model II in preference to
Model 1 for the majority of scenes. Recall that MRF2 and MRF3 are realisa-
tions from a Markov random field with a fixed number of black pixels. Using
the ‘correct’ neighbourhood system appears to have little effect on the quality
of the reconstruction.

As the ‘optimal’ B will usually be unknown we examine the average
misclassification rates for model II and III for several values of B. The average
percentage of misclassified pixels is presented in Tables II to VII for varic')us
values of B.

In Tables I and III we display the average percentage of misclassified pix-
els using models II and MI for various values of B and 6°=0.5. Similar resuits
were obtained for other values of o2. There is strong evidence to suggest that
the ‘optimal’ value of 8 using model III is larger than the corresponding value
for model II. In figure 15 we compare the average percentage of misclassified
pixels when MRF?3 is reconstructed using models II and III (¢%=0.5). We plot
the average percentage of misclassified pixels using model II against . For
Modei OI we plot the corresponding percentage against '(1/1.17)[3. From this

figure we see that a useful first approximation is to multiply the value of B used




-10 -

with model II by 1.17 when using model IIL. This ensures that the second term
in (2.6) has the same value for both models when &;; (x;;)=8.

TABLE II

Average percentage of misclassified pixels using Model II
Standard errors in brackets
Optimal reconstruction is boid faced

62=05
B__ BCIR __CROSS _TWO MANY VMANY MRF2 _MRE3
0.25 4.53 4.75 496 5.91 9.78 9.86 7.74
(0.10) (0.11) (0.09) (0.13) (0.09) 0.14) 0.12)
0.50 0.80 1.02 1.30 241 7.11 7.85 4.92
0.03) (0.04) (0.04) 0.07) (0.10) (0.09) (0.09)
0.75 055 1.00 111 248 8.04 8.44 5.13
(0.04) (0.07 (0.05) (0.09) (0.19) 0.10) (0.0
1.00 0.63 1.01 1.20 2.53 9.56 9.01 5.48
0.04)  (0.05) 0.07) (0.09) (0.18) (0.09) 0.08)
1.25 0.75 1.22 1.44 3.19 11.60 9.83 6.16
(0.05) (0.08) (0.10) (0.10) (0.25) (0.12) (0.12)
1.50 0.70 1.27 1.78 3.61 13.19 10.40 6.77

(0.03)  (0.08) (012) (0.12) _ (028) _ (0.13) _ (0.12)

TABLE I

Average percentage of misclassified pixels using model III
Standard errors in brackets. Optimal reconstruction is bold faced

6?=05
B  BCIR _CROSS TWO MANY VMANY MRF2 MRF3

025 631 6.54 6.71 7.58 11.02 11.12 9.20
0.12) (0.13) 0.12)  (0.13) 0.09) 0.14)  (0.12)

0.50 1.18 1.38 1.59 2.78 - 7.24 7.98 522
(0.05) (0.05) 0.06) (0.07) (0.10) 0.09 (0.09
075 0.60 1.01 1.08 2.38 7.37 8.01 4.98
(0.04) 0.07) 0.05) (0.09 (0.15) 0.11)  (0.10)
1.00  0.64 0.98 0.97 227  8.26 8.63 3.20
(0.04) 0.06) (0.06) (0.08) (0.19) (0.08)  (0.09)
.25  7.11 1.08 1.25 2.81 9.76 9.25 3.72
(0.04) (0.06) (0.09)  (0.08) (0.25) 0.11)  (0.09)
1.50  6.87 1.08 1.44 3.13 11.24 9.72 6.22

(0.04) _(0.08) (0.09) (0.11) __ (0.30) (0.12) (0.11)

In Tables IV to VII we present the analogous results for black and white
pixels. These results are similar to those in Tables II and III. Notice that the
‘optimal’ value of P is larger for white pixels than for black in the majority of

scenes. This.may be due to the higher proportion of boundary pixels for black
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features in most scenes ( see Table IX).

TABLE IV

Average percentage of black pixels classified white using model I .
Standard errors in brackets.
Optimal reconstruction is bold faced

o®=0.5

B BCIR CROSS TWO_ _MANY VMANY MRF2 MRF3
025 443 172 7.59 11.91 16.16 9.51 7.70
0.15) (0.34) 0.28) (0.39) (0.33) 0.20) (0.18)

050 077 4.30 4.87 12.13 18.46 7.87 4.98
0.06) (041) ©.21) (044 (0.48) 0.16) (0.12)

075 042 5.36 5.33 14.80 24.96 8.11 5.04
0.06) (0.37) 0.33) (0.67) (0.54) ©0.17) (0.14)

1.00 037 5.21 594 16.98 32.37 8.86 5.36
0.05) (0.34) 0.58)  (0.65) (0.74) 0.16) (020)

.25 030 7.37 6.70 2243 39.91 9.05 5.98
0.03) (0.72) 041 Q.07 (0.81) 0.28) (0.27)

1.50 0.36 7.23 8.12 . 25.37 46.71 10.34 6.70
(0.04)  (0.81) (0.84) (0.92) (1.05) (0.30) (0.16)

L

However the accurate estimation of the ‘optimal’ value of 'B is difficult in many
cases as the plot of the average misclassification rate against B (see figs 8 to

14) is J-shaped in the area of interest.

TABLE V

Average percentage of black pixels classified white using model III
‘ standard errors in brackets
Optimal reconstruction is bold faced

0%=0.5

B BCIR CROSS TWO MANY VMANY MRF2 MRF3

025 6.27 9.37 9.12 12.75 16.42 1091 9.13
0.12)  (0.33) (0.34) (0.34) 0.25) (0.20) (0.19)

0.50 1.16 4.52 4.81 11.30 16.88 8.08 5.33
0.06) (037 (019 (0.37) (0.36) 0.21) (0.16)

075 0.49 5.11 4.64 13.05 21.26 7.74 4.98
0.06) (0.40) (0.27) (U.60) (0.46) 0.14) (0.14)

1.00 040 4.82 4.48 14.55 26.60 8.47 5.25
: (0.06) (0.41) (0.39) (0.56) (0.70) 0.16)  (0.20)

1.25 035 6.35 5.63 18.96 32.26 8.62 5.48
(0.04) (0.59) (0.39) (0.86) (0.87) (0.18)  (0.22)

1.50 037 6.05 6.05 21.36 39.30 9.67 6.19
(004) (063) (0.58) (0.87) _(1.03) (0.23) (0.17)
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TABLE VI

Average percentage of white pixels classified black using model II

Standard errors in brackets
Optimal reconstruction is- bold faced

02=0.5

i) BCIR CROSS TWO MANY VMANY MRF2 MRF3
025 4.6l 4.45 4.60 5.08 7.58 10.22 779
©.11) (0.12) (©.100 (©0.13) 0.16) 0.24) (0.19)
050 0.83 0.69 0.80 1.07 3.21 7.83 4.85
005 (0.04) (0.05) (0.05 0.12) 0.13) (0.19)
075 0.64 0.55 0.53 0.77 2.22 8.79 5.23
(0.04) (0.06) (0.06) (0.05) 0.11) 0.16)  (0.15)
1.00 082 0.58 0.54 0.53 1.71 9.16 5.60
0.07) (0.05 (005 (0.09 (0.10) 0.18) (0.19)
1.25 1.08 0.60 0.71 0.53 1.85 10.63 6.35
0.10) (0.07) (0.10) (0.05) (0.18) 0.28) (0.25)
1.50 095 0.66 0.90 0.60 1.66 10.46 6.85
007 (005 _(0.08) (005 (0.10) (027) _ (0.16)
TABLE VI
Average percentage of white pixels classified black using model III
Standard errors in brackets
Optimal reconstruction in bold face
6%=0.5
8 BCIR CROSS _TWO MANY VMANY MRF2 MRF3
025 6.35 6.25 6.38 6.87 9.17 11.33 9.28
0.14) (0.13) (0.12) (0.14) 0.15) 0.25) (0.18)
050 1.20 1.06 1.14 1.60 3.93 7.87 5.10
(0.06) (0.05) (0.06) (0.05) (0.14) 0.15) (0.18)
075 0.68 0.59 0.59 091 2.60 8.28 4.97
0.0s) (0.06) (0.05) (0.05) (0.08) (0.20) (0.14)
1.00 082 0.58 0.49 0.57 1.95 8.80 5.14
(0.07) (0.05) (0.05) (0.04) (0.08) 0.13)  (0.10)
1.25 099 0.55 0.64 0.57 2.02 9.89 5.96
(0.08) (0.06) (0.08) (0.07) 0.17) 0.22) (0.20)
1.50  0.93 0.58 0.80 0.60 1.59 9.78 6.25
007) (005 (008 (0.05) (0.10) (0.26) _(0.17)

The number of misclassified pixels is a crude image summary which takes

no account of the spatial characteristics of the scene. To gain further insight

into the differences between model I and III we use an image summary which

counts the number of misclassified pixels close to the true boundary between

black and white areas. A similar procedure was suggested by Owen, in the dis-

cussion of Ripley (1986).
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TABLE VIII
Average percentage of misclassified boundary pixels
for MRF3. Standard errors in brackets
The optimal reconstruction in bold face
(There are 2712 boundary pixels in MRF3)
6*=0.5

B
Model 0.25 0.50 0.75 1.0 1.25 1.5

)i} Boundary 16.74 16.02 1735 1833 2030 2142
0.23) (0.17) (0.21) (0.22) (0.25)

14 All 7.74 4.92 5.13 5.48 6.16 6.77
0.12) (.09 (0.07) (0.08) (0.12)

m Boundary 17.27 1598 1678 17.51 19.11  20.19
0.25) (0.18) (0.28) . (0.25) (0.20)

m All 9.20 5.22 4.98 5.20 5.72 6.22
(0.12) (0.09) (0.10) (0.09) (0.09)

We reconstruct MRF3 using models Il and II with 02=0.5. The average
percentage of misclassified boundary pixels are displayed in Table VIII. In this
table we call a pixels with at least one neighbour of a different colour (in the
true scene) a boundary pixel. It is immediately apparent that the majority of
misclassified pixels lie near colour boundaries when moderate values of B are

 used. When MRF3 is reconstructed using model I and B=0.5 there are
approximately 433 misclassified boundary pixels and 89 elsewhere. There is
some evidence that the optimal reconstruction of boundary pixels require a
smaller value of B than the scene as a whole. This is also apparent from the
example described by Owen in the discussion of Ripley (1986). There appears
to be little observable difference between Model II and III using this image

summary.

5. THE CHOICE OF THE SMOOTHING PARAMETER.

In this section we attempt to identify features of the underlying scene and




R T — v b

.14 -

error distribution which influence the choice of B in (2.6). We restrict attention
to mode! II. First we examine the relationship between the ‘optimal’ value of B
and the signal variance 0. In figures 8 to 14 we plot the average percentage
of misclassified pixels against B for various values of 2. Notce that the value
of B which gives the smallest average misclassification rate is approximately
the same for all values of 6> considered. The results for VMANY (fig 12)
behave atypically. In this respect the ICM algorithm differs from simple linear
regularisation techniques where the ‘optimal’ smoothing parameter is typically
proportional to the noise to signal ratio , Hall & Titterington (1986, p 336). The
effect of grossly misspecifying 02 can be large as the example given in figure 7
-of Ripley (1986) shows. However the relative stability of the misclassification
rate to changes in [ chose to its ‘optimal’ value suggests that ICM is robust to
modest misspecification of g2, We'see from figs 8 to 14 that worthwhile gains
can be achieved using the ‘optimél' value of . .

In the remainder of this section we examine the relationship between the
‘optimal’ value of § and certain features of the underlying scene. First we con-
sider the relationship between the ’optimal’ value of B and its maximum
pseudo-likelihood estimate. In this approach we calculate the value of B which
maximises the conditional likelihood

m n

TTITP (xi;j 1 F ; j)B). (5.1)

i=lj=1
From Table IX we see that the pseudo-likelihood estimates of § using model I
(Bx) are usually greater that the value of B giving the smallest average
misclassification rate. This behaviour may be due to the fact that the majority
of scenes considered are untypical realisations from-a MRF. For the scenes
constructed by sampling from a conditional MRF a different pattern emerges.
In this case the ‘optimal’ P is precisely the value of B used to construct the
underlying scene (see Tables ILII and IX), provided we use the correct

model in our reconstruction. The pseudo-likelihood approach has the

Figs 8-15
here
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disadvantage of indicating an infinite value of P for certain pixel configurations.
Next we introduce two statistics which measure the smoothness of the

underlying scene.
DEFINITION : TWO IMAGE SUMMARIES

B : Total boundary length between black and white pixels
( excluding the window).

Qr, : The number of pixels which have at least one
neighbour of a different colour using an i order

neighbourhood.

Notice that Switzer (1976) measures the ‘smoothness’ of a random function by
the total arc length of its contour plot at certain levels. Applying this measure
to binary random functions gives the statistic B. The image summary Qr can
be written as the difference between the statistics ¢, and d, defined in Ripley
(1986, p 94) where pixels adjacent to the window are neglected. See Ripley
(1977) for a discussion of image summaries and their application. Notice that

» Qr,= 2B for many scenes ( see Table IX for several examples ). These statis-
tics differ in their treatment of ‘small’ features. An isolated black pixel will
contribute 4 to the total boundary length and 9 to Qr.,.

There is strong evidence (see Table IX) to suggest that the misclassification
rate for a feature is strongly influenced by the percentage of boundary pixels (
as measured by Qr, or boundary length, B ). This effect is indicated by the
difference in the average percentage of misclassified black and white pixels.
The scene BCIR appears to behave in an anomalous way. There is some evi-
dence ( see Table IX) that the value of B giving the lowest average proportion

of misclassified pixels decreases as the proportion of boundary pixels ( as
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measured by Qr, or total boundary length) increases. The value of 3 giving the
smallest average percentage of misclassified pixels gives the strongest evidence
for this reladonship. There appears to be little difference in the descriptive abil-
ity of Qr, and B. In the scenes considered we see that the pseudo-likelihood
estimates of B are not closely related to the smoothness measures described

above.

TABLE X
Smallest average percentage of misclassified pixels using model I
and the ‘optimal’ value of f§ vs smoothness measures.
( * pseudo likelihood estimate using model III)
¢?=0S5

Picture black  white all Qr. B Brix

BCIR 0.30 0.64 0.55

B . 125 075 075 344 172 1.85
pixels 4300 5700 10000

CROSS 4.30 0.55 1.00

B 050 075 0.75 516 260 2.09
pixels 926 9074 10000

TWO 487 053 LIl
B 0.5 075 075 480 240 2.12
pixels 1225 8775 10000

MANY 1191 053 2.41
B 0.25 1.25 0.5 1248 624 2.62
pixels 1216 8784 10000

VMANY 1616 171 7.11
B 0.25 1.0 0.5 3776 1888 1.98
pixels 2560 7440

MRF2 787 783 785 4109 2324 0.50
B 05 05 0.5
pixels 5065 4935

MRF3.- 498 4.85 492 2712 1453 0.63
B 0.5 0.5 0.5 ' (*0.75)
pixels 5065 4935

A useful indication of the effectiveness of a reconstmiction technique can be

obtained by considering its properties in reconstructing a one colour scene. In
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! Table X we display the average percentage of misclassified pixels when a one

r colour scene is reconstructed using model II. For values of P less that 0.4

appreciable errors are incurred. So for scenes with large monochrome areas we

should choose B 2 0.4.

TABLE X
Average percentage of misclassified pixels for a one colour scene
(using model II) for various values of
| Standard error in brackets

! B 0.2 0.25 0.3 0.35 0.4
o? =0.25 4.98 3.35 2.15 1.30 0.80
r (0.03) (0.03) (0.02) (0.02) (0.01)
o2 =0.50 6.6 3.93 2.26 1.31 0.75
(0.06) (0.05) (0.03) 0.03)  (0.02)

62 =075 7.14 4.06 2.34 1.40 0.82
(0.06) (0.06) (0.05) 0.04) . (0.03)

o¢=1.0 7.24 425 2.61 1.59 1.06
(0.08) (0.07) (0.06) 0.05)  (0.05)

o =125 7.49 4.46 2.68 1.87 1.31
(0.08) (0.09) (0.07) 0.07)  (0.06)

% =1.50 7.68 4.52 3.03 2.11 1.52
(0.10) (0.08) (0.08)  (0.05)

(0.09)

To illustrate this point further consider the percentage of misclassified pix-

els for BCIR with 62=0.25. Recall that the majority of pixels in BCIR are far

from the colour boundaries. In Figure XI we compare the percentage of

misclassified pixels using ICM with the percentage of misclassified pixels for a

one colour scene using the same model.




-18 -
TABLE X1

. A comparison of the average percentage of misclassified pixels of BCIR
and a monochrome scene when reconstructed using model I
Standard errors in brackets ( 60 realisations for mono scene )

Optimal reconstruction is bold faced

0%=0.25
B
025 0.50 0.75 1.00 1.25 1.50
BCIR 4.53 0.80 0.55 0.65 0.75 0.70

0.10) (0.03) (0.04) (0.04) 0.04) (0.03)
Monochrome 3.34 0.27 0.02 <0.02 <0.02 <0.02
(0.02)  (0.01) (0.003) (<0.001) (<0.001) (<0.001)

The optimal reconstruction is obtained with B=0.75, where the percentage of
misclassified pixels is 0.55. The contribution of pixels far from the colour
boundary is approximately 0.02%. These result suggest that the errors incurred
during the reconstruction of scenes like BCIR occur near the colour boundaries
for moderate values of B ( see Table VIII).

Consider a black pixel which has k white neighbours when it is updated.
The probability of misclassifying this pixel during the current iteration can be
calculated from (2.6). In Table XII we display this probability for model II with
independent normally distributed noise (62=0.5).

TABLE XII

The probability that a black pixel is classified white
at a particular iteration when it has k white neighbours

0?=0.5
B
k 0.25 0.50 1.0
8 0.98 1.00 1.00
7 0.92 1.00 1.00
6 0.76 0.98 1.00
5 0.50 0.76 0.98
4 0.16 016 0.16
3 0.08 0.02 0.00
2 0.02 0.00 0.00
1 0.00 0.00 0.00
0 0.00 0.00 0.00

These calculations strongly suggest that model II behaves like a simple majority
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vote when B21.0. Table XII can be used to estimate the ‘vulnerability’ of
image features for various values of B. As an example consider the comer pix-
els (k=5) of a black rectangle. This configuration is highly vulnerable when
B20.5. As ICM is an iterative procedure this calculation will not give the pro-
bability of misclassifying a given pixel. However caiculations of this type are
useful in visualising the effect of ICM with various values of B and neighbour-
hood system. Using this approach to choose B is analogous to a method sug:
gested by Ripley (1986) with the important addition, that information is

included about the noise distribution.
6. SOME DISTRIBUTIONAL PROPERTIES OF ICM

There appears to be no work in the literature on the distributional properties
of the ICM estimator of (x;;) or any functional of interest. The only relevant
work is due to Geman and Geman (1984), who describe how to sample from
the posterior distribution of (x;;). In this section we examine the variance of the
percentage of misclassified pixels. The number of misclassified pixels can be
regarded as a functional of the scene formed by a comparison between (x;;) and
its reconstruction. In Table XIII we display the average percentage of
misclassified pixels with its standard deviation in brackets for 62=0.5 and
model II. The figures for the optimal reconstruction are given in bold face.
Recall that ICM is a ‘local’ procedure. This suggests a poisson approximation
for the number of misclassified pixels. The coefficient of variation of the per-
centage of misclassified pixels at the ‘optimal’ value of [} appears to decrease
as the misclassification rate (and complexity) increases. This is not consistent"
with a poisson assumption. In particular we see from Table VIII that
misclassified pixels cluster near colour boundaries. The skewness (b*) and
kurtosis (b,) of the percentage of misclassified pixels were calculated and sug-

gest a symmetric distribution with b, between two and three. These are
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tentative conclusions as the number of realisations used in this study is small.

TABLE XTI
The standard deviation ( in brackets) and the average percentage
of misclassified pixels using model II
The optir..il reconstruction is bold faced

o>=0.5

B SS  TW MANY _VMANY _MRF2
025 4.53 475 4.96 591 9.78 9.86 7.74

0.40)  (0.42) (0.33)  (0.49) (0.34) (0.54)  (0.48)
0.50  0.80 1.02 1.30 2.41 7.11 7.85 4.92

0.100 (0.16) (0.I7) (029) (0.39) (035) (0.33)
075 0.55 1.00 1.11 2.48 8.04 8.44 5.13

0.14) (026) (0.18) (0.34) (0.73) 0.39)  (0.25)
1.00  0.63 1.01 1.20 2.53 9.56 . 9.01 5.48

(0.16) (0.20) (0.25) (0.35) 0.71) (0.35)  (0.32)
125 0.75 1.22 1.44 3.19 - 11.60 9.83 6.16

©.21) (033) (0.38) (0.41) (0.96) 0.45)  (0.47)
1.50 0.70 1.27 1.78 3.61 13.19 1040  6.77

(0.12) (033) (0.46)  (0.46) (1.10) (0.51) (0.45)

7. COMPUTATIONAL DETAILS

Pseudo-random deviates distributed uniformly on [0,1] were generated using
Wichmann & Hill (1982). We takc ix=27631 , iy=5627 and iz=10234.
Pseudo-normal deviates with zero mean and unit variance were constructed
using the Box-Muller transformation. The first step in our algorithm is to deter-
mine the maximum likelihood estimate of (x;;). This colouring is used as the
initial state ( iteration zero ) of our algorithm. Each pixel is visited in raster
scan order and the colour of the (i,j)* pixel is updated using (2.6). The cpu
time taken by our algorithm is proportional to the size of the neighbourhood
system used, the number of pixels and the size of a2,

In Table XIV we display the average number of pixels whose colour

changés during the k** iteration when MRF?3 is reconstructed using model II.




m ——— - % L 4

-21-

The average percentage of misclassified pixels is also presented. In this table

one iteration is equivalent to a complete sweep of the scene ( 10* pixel visits ).

Notice that the majority of changes occur during the first iteration (more
changes are made as P increases). Typically only one or two pixels change
colour during later iterations. This pattern is repeated for each combination of

scene, 6% and model considered.

TABLE XIV

# Average number of changes per iteration and percentage of
{ misclassified pixels for MRF3 (model II)
[ Standard errors in brackets

02=0.5
p

B=0.25 $=0.50 B=1.0
k changes % miscl'd changes % miscl'd changes %miscl’d

1 1587 9.84 2117 6.47 2346 6.58

(8) (0.13) (12) (0.09) (10) (0.08)

2 206 8.18 189 5.31 153 5.93

(5) (0.12) (4) (0.08) (3) (0.08)

3 42 7.87 44 5.07 50.0 5.70

| () 0.12) 3) ©008) (2 (0.08)

4 12 7.78 16 4.98 21 5.58

() (0.12) (1) (0.08) (1) (0.08)

5 3 7.75 6 495 10 552

) 0.12) ) (0.08) (1) (0.08)

6 1 7.74 3 493 5 5.50

(0) 0.12) (0.6) (0.08) (1) (0.08)

12 0 . 7.74 0 492 0 5.48

(0.12) (0.09) (0.08)

This suggests the following modification of the basic algorithm:

Pixels are only updated when they are flagged as ‘active’. The pixel (ij) is
‘active’ when the colour of at least one of neighbours has changed during the

current iteration. Pixels are visited in raster order. When a pixel's colour

_Li IIIIOIINIRRRE S SO ]
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changes its neighbours become active. Pixels are de-activated after they are

updated.

Using this algorithm we would visit ( see Table XIV) less than nine hundred
pixels on average ( using a second order neighbourhood ) during the third itera-
tdon. We expect the modified algorithm to converge after approximately 3
iterations in general. To obtain further gains in efficiency we might ‘switch
off” pixels whose colour has a- low probability of being changed during the
current iteration,see Ripley (1986). For example a pixel which has no neigh-

bours of a different colour can be de-activated.
8. CONCLUSIONS

From the simulation study described in this paper we suggest the following

rules of thumb for prospective users of ICM.
1. Should I use ICM ?

Our empirical results suggest that the misclassification rate of a feature
increases with the proportion of boundary pixels (see Table IX and compare the
misclassification rate for black and white pixels). Typically small feature will
be ‘erased’. If the aim of an analysis is to find smail features then a technique
based on masks will probably be preferable to ICM. However it is apparent
from Table I that substantial gains over the maximum likelihood estimate, can

be achieved by smoothing,
2. Which model should I use?

We suggest that model Il should be used in the absence of specific

knowledge about the uncorrupted scene. If we know that the underlying scene
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is non-homogeneous we can exploit this by using a hierarchical model, see

Derin & Elliot (1987) or Woods,Dravida & Mediavilla (1987).
3. What value of B should I use?

This is a difficult question to answer in the absence of any information
about the underlying scene. The examples considered in this paper suggest that
useful gains can be achieved using the ‘optimal’ value of B rather than a port-
manteau value of , say P=1.5. We distinguish between two cases. In the first
we assume that the underlying scene is a ‘typical’ realisation from a MRF.
Then the ‘optimal’ reconstruction is obtained using the neighbourhood system
and value of P specified by the underlying MRF. When the underlying scene
cannot be regarded as a ‘typical’ realisation from a MRF we suggest the used
of smoothness measures such as the total boundary length in the choice of the
‘optimal’ value of P. In both cases we see that the ‘optimal’ value of B does -
not depend on 2. From figs 8 to 14 we see that there is some leeway in

choosing the ‘optimal’ valye of .
4. Is the ICM estimate difficult to calculate?

From the discussions in section 7 we see that a single reconstruction of a
binary 10* pixel scene can be computed simply. The calculations appear well
suited to parallel implementation. The scene VMANY with 62=0.5 was recon-
structed in around 39 seconds (using model II with B=0.5) on a SUN-3 Work

Station with a floating point accelerator.
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CAPTIONS FOR FIGURES 1 TO 15

FIGURE 1 BCIR : Circle centred at (30,30) with radius 40. The origin is at
the bottom left hand comer of the window which has dimensions
. {0,100)x(0,100).

FIGURE 2  CROSS : Two rectangles with comers at
{(10,40),(60,20),(70,30),(20,50)} and {(25,20),(30,15),(55,50),(50,55)}

FIGURE 3 TWO : Two rectangles with comers at {(10,40) , (60,40) ,
(60,50) , (10,50)} and {(20,55) , (65,55) , (65,60) , (20,60)}

FIGURE 4 MANY : Eight circles of radius 6 centred at , (25,20) , (45,20) ,
(65,20) , (80,20) , (25,80) , (45.80) , (65,80) , (85,80) and ten circles of radius
3 centred at (20,40) , (35,40) , (50,40) , (65,40) , (80,40) , (20,60) , (35,60) ,
(50,60) , (65,60) , (80,60).

FIGURE 5 VMANY : Eighty circles with radius 3 and centres at
(5+104,10k~7) for j=1.....8 and k=1,...,10.

FIGURE 6 MRF2 : A synthetic realisation from the MRF specified in
MODEL 1I with f=0.5. This scene was constructed using an algorithm given in
Cross and Jain ( 1983).

FIGURE 7 MRF3 : A synthetic realisation from the MRF specified in Model
IO with B=0.75. This scene was constructed using the algorithm given in Cross
and Jain (1983).

FIGURE 8 A plot of the average percentage of misclassified pixels against
and 6? when BCIR is reconstructed using MODEL I ~

FIGURE 9 A plot of the average percentage of misclassified pixels against 8
and ¢ when CROSS is reconstructed using MODEL II

FIGURE 10 A plot of the average percentage of misclassified pixels against 8
and ¢ when TWO is reconstructed using MODEL II

FIGURE 11 A plot of the average percentage of misclassified pixels against 8
and ¢ when MANY is reconstructed using MODEL I

FIGURE 12 A plot of the average percentage of misclassified pixels against
and ¢ when VMANY is reconstructed using MODEL II

FIGURE 13 A plot of the average percentage of misclassified pixels against 8
and o when MREF?2 is reconstructed using MODEL II
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FIGURE 14 A plot of the average percentage of misclassified pixels against 3
and ¢ when MREF3 is reconstructed using MODEL II

FIGURE 15 A plot of the average percentage of misclassified pixels against
for model II and (1/1.117)B for model III




R.H.Glendinning : FIGURE 1




R.H.Glendinning : FIGURE 2

- —_-——




. N

-30 -

R.H.Glendinning : FIGURE 3




«31.

R.H.Glendinning : FIGURE 4




R.H.Glendinning : FIGURE 3

seseseeS
TTXXXXE.
TETEYXXXTY.
TTYYXEX
TYTIXEX
TTYTIXER
TYRYEXX N
sesseeaEs
sesaeSes
M ITITTT N NS




R.H.Glendinning : FIGURE 6




R.H.Glendinning : FIGURE 7




R.H.Glendinning :

The average percentage of misclassified pixels

4.0

3.8

1.0

-35-

FIGURE 8
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R.H.Glendinning : FIGURE 11
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Several algorithms for image reconstruction in positron emission tomography
(PET) have been described in the medical and statistcal literature. We
study a continuous idealisation of the PET reconstruction problem,
considered as an example of bivariate density estimation based on indirect
observations. Given a large sample of indirect observations, we consider the
size of the equivalent sample of observations, whose original exact positions
would allow equally accurate estimation of the image of interest. Both for
indirect and for direct observations, we establish exact minimax rates of
convergence of estimation, for all possible estimators, over suitable
smoothness classes of functions. For indirect data and (in practice
unobservable) direct data, the rates for mean integrated square error are
n-Ple+D  and (n/logn)‘P/(P”) respectively, for densides in a class
corresponding to bounded square-integrable pth derivatives. We obtain
numerical values for equivalent sample sizes for minimax linear estimators
using a slightly modified error criterion. Modifications of the model to
incorporate attenuation and the third dimension effect do not affect the
minimax rates.
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1 Introduction

Tomography is a non-invasive technique for reconstructing the internal structure
of an object of interest, often in a medical context. Positron emission tomography
(PET) deals with the estimadon of the amount and location of a radioactively labeled
metabolite on the basis of particle decays indirectly observed outside the body.
Emission tomography in general, and PET in particular, has been the subject of
considerable recent research in nuclear medicine, and has attracted the interest of
statisticians as an example of a reconstruction problem involving incomplete and noisy
data. ’

The formulation of the PET problem we shall consider is basically that given by
Shepp and Vardi (1982) and Vardi, Shepp and Kaufman (1985). Following their
convention we shall consider a particular PET experiment, where the brain is scanned
by counting radioactive emissions from tagged glucose. The distribution of glucose
within the brain corresponds to the glucose uptake mechanism, and so a map of the
glucose distribution within the brain gives an indication of the pattern of the brain’s
metabolic activity. In the idealisation we shall consider, following Vardi et al. (1985),
the radioactive t1gging of the glucose gives rise to emissions of positrons distributed as
a Poisson process in space and time; the spatial intensity of emissions is the same as
the distribution of glucose. Each positron that is emitted annihilates with a nearby
electron, and yields two photons that fly off in opposite directions along a line with
uniformly distributed orientation. One or more rings of sensors placed around the
patient’s head make it possible to detect the photon pairs and hence, for each emission
that is detected, to give a line on which the point of emission must have occurred.
However, for equipment of the kind discussed here, it is not possible to detect the
position of the emission on the line.

The PET problem is just one of a large number of statistical problems involving
indirect observations of the phenomenon of interest; in our case the observations are
indirect in that the emissions themselves are not observed directly. Such problems
arise, for example, in geophysics, in stereology and wherever linear deconvolution with
known filter is required. Our aim in the present paper is not just to study the PET
problem but also to develop theory that can be applied in many other contexts.

In a typical PET scan, a large number, perhaps one to ten million, radioactive
emissions are recorded, and the image of interest, a slice through the patient’s brain or
body, is reconstructed in some way from this apparently vast data set. But is ten
million observations really a large sample in this kind of context? One way of gaining
some insight into the problem is to think in terms of equivalent sample sizes. We
make some smoothness assuriptions about the image of interest, and then ask how
accurately it could possibly be reconstructed given a particular indirect sample. The
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equivalent sample size would be the number of emissions whose original positions
could yield an equally accurate estumate. The equivalent sample size gives, in terms
more attuned to usual statistical intuition, a quantification of the information actually
available from our sample of ten million indirectly observed emissions, and hence
gives an idea of how much is lost by the indirect nature of the observation process.

In Section 2 below, we formulate the reconstruction problem as an example of
nonparametric bivariate density estimation based on indirect data, in fact an example
of a linear inverse problem in a function space. The function we estimate is the
intensity function of emissions in the slice through the brain. A key feature of our
treatment is the explicit singular value decomposition of the transform linking the
unknown density with that of the observed data. The main conclusions of the paper
are summarised in Section 3. In particular we give in Section 3 a table of explicit
equivalent sample sizes, admittedly for our mathematical idealisadon of the PET
problem. In Section 4 we confine attention to linear estimators, and to intensites
falling in a suitable smoothness class of functions. We find the exact minimax rates of
consistency, that is the rate for the least favourable density and the best linear
estimator. We then show, in Section 5, that these rates cannot be improved by
extending consideration to all possible estimators, linear or non-linear. Thus we do not
consider particular iterative non-linear algorithms proposed elsewhere for practical use,
but instead we establish the best possible performance achievable by any estmator.

Section 6 of the paper considers modifications of our mathematical idealisation in
order to take account of attenuation of the emitted photons and of the three
dimensional nature of the problem. Qur broad conclusions carry over when these
effects are incorporated. In Section 7, we extend our results to some error measures
based on the derivatives as well as the values of the images and their reconstructions.
Findlly, in Section 8, we make some concluding remarks, and mention some possible

issues for future research.

A subsidiary objective of the paper is to illustrate, in a relatively simple and
concrete setting, the general approach to deriving lower bounds to estimation risk
developed by Le Cam (1985, for example), Ibragimov and Hasminskii (1981), and
Birgé (1983). This method relates the best possible speed of estimaton (in a given
"global” metric) to the metric entropy structure of the parameter space. We need a
minor modification to handle the present indirect estimation setting, introducing a form
of "modulus of continuity” of the inverse transform. This material is presented mainly
in Section 5. -

There is a substantial literature on practical algorithms for reconstruction in the

PET setting. An extensive survey covering the period up to 1979 is given by Budinger,
Gullberg and Heusman (1979); this includes adaptation of methods from X-ray
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transmission tomography and the orthogonal series method of Marr (1974). Maximum
likelihood methods were proposed by Rockmore and Macovski (1977); they were
implemented via the EM algorithm by Shepp and Vardi (1982) (see also Vardi, Shepp
and Kaufman, 1985) and modified in various ways to incorporate smoothing by
Geman and McClure (1985) and Silverman et al. (1988). Some practical illustration of
the orthogonal series method introduced in the present paper is given by Jones and
Silverman (1989). A recent survey of algorithms is given by Tanaka (1987). Papers
considering noise limitations in X-ray and transmission tomography include Chesler et
al. (1977) and Tretiak (1978, 1979). The focus of these papers differs from ours in
that they consider estimation of a fixed finite number of real-valued functions of a
particular unknown intensity, using discrepancies based on variance rather than mean
square error.

2. Mathematical model and technical preliminaries

2.1 An idealised problem and the Radon transform

In our idealised version of the PET problem, the ring of detectors defines a slice
of the patent’s head, and the reconstruction aims to display a picture of the glucose
density within that slice. Emissions that give rise to photon pairs, one or both of
which miss the detector ring, will go unrecorded. Bearing this in mind, we shall
regard the slice as a plane and consider an essentially two-dimensional problem where
(see Fig. 2.1) emissions take place in the plane according to some density within a
detector circle taken to be the unit circle in the plane. An emission at P gives rise to a
photon pair whose direcfions of flight lie in the plane along a line / through P with
random, uniformly distributed, orientation. The finite size of the detectors is ignored
and it is assumed that the points Q and R of the intersection of [ with the detector
circle are observed exactly.

Give the name derector space to the space D of all possible unordered pairs QR
of points on the detector circle, and call brain space the original disc B in the plane
enclosed by the detector ring. Assume that coordinates are chosen so that B is the unit
disc. Brain space is parametrised either by cartesian or standard polar coordinates. To
parametrise detector space, let s be the length of the perpendicular from the ongin to
the detected line QR as in Figure 2.2, and ¢ the orientation of this perpendicular. Thus
Dis {(5,9):0<s551, 0S9p<2r}.

We now define dominating measures on brain space and on detector space.

'x lebesgue measure, so that

Define a measure g on brain space to be x~
du(r.8) = 7 'rdrdg for 0<r<l and 0<6<2x if polar coordinates are used, and

du(xy .x5)-= - dx,dx, for ||x| <1 in Cartesian coordinates. On detector space, define
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a measure 2 by dA(s,p) = 2x~2(1-s2) dsdp. Both u and A integrate to 1.

Suppose an emission takes place at a point distributed with probability density
f(xy.x;) with respect to x4 in brain space. Let g = Pf be the probatility density in
detector space, with respect to 4, of the corresponding detection of a pair of photons,
so that the mapping P maps the actual density of eriissions to the corresponding
observable density in detector space. We shall show belcw that Pf is given by

Pf(s,@) = }(1-s2)} j“““” f(scos @ ~ tsin @, ssin @ + 1 cos p)dr  (2.1)

—d(1-5?)
The integral in (2.1) is the so-called Radon transform (see Marr, 1974; Deans, 1973)
of the density f, namely the line integral of f along the line / with co-ordinates (s,¢)
in detector space. Since the length of the segment QR is 2(1-s2)3, it can be seen at
once that Pf(s,p) is the average of f over the part of / that intersects the detector disc
[x[[<1. If f is the uniform density in brain space, so that f(x;,x;) = 1 for all |[x[[<]1,
then we will have Pf(s,p) = 1 for all s and ¢. Thus the probability measure A in
detector space is the detector space distribution corresponding to the uniform measure
4 in brain space.

It remains to verify (2.1). Suppose an emission takes place at (X ,X,) and that
the corresponding photon pair has trajectory at angle W as shown in Figure 2.3; taking
0<W<r for definiteness, the joint probability density with respect to dx;dx,dy on
llx||<1 and 0Sy<r is given by

fx, xw (X1,%3,¥) = 772 f(x1,%p)

using the definition of x4 and the fact that ¥ is independent of X, and X,. Now
change variables by setting

S = |X;cos¥ + X,sin'¥|

Wy if Xjcos¥ + X,sin'¥ 20
¢ = Y+r otherwise

T =-X;sin¥ + X,cos¥

the variables (S,®) are the coordinates of the detected photon pair. After making the
ransformation, which has unit Jacobian, and integrating out the unobserved variable T,
we obtain the joint density with respect to dsdo

~7 V(1~s?) . .
fsols.0)=nx f (1-57) f(s cos ¢ — tsin @,5 sin ¢ + ¢t cos @)dr.
(1 -

The density (2.1) with respect to 4 follows at once from the definition of A.




2.2 Estimators and loss functions

In this section, we define various classes of estimator of f that we shall be
considering, as well as two measures of the accuracy of estimation of f. The proofs of
the three propositions stated in this section are given in the Appendix.

Two particular classes of estimator are of obvious interest. Let Tp(n) be the
class of all possible estimators based on a sample of » independent direct observations
in brain space from the density f. Let T;(n) be the class of all estimators of f based
on a sample of n indirect observations, i.e. observations in detector space drawn from
the density Pf. It will also be important in some of our work to concentrate attention
on those estimators that are linear estimators. An estimator f based on observations
Z,,....2, is called linear if there exists a weight function w(x,z) such that
J’ w(x,z)du(x)=1 for all z in the space of the observations, and

Fx)= a7 S w(x,Z) forallxin B. 2.2)
i=1
Let T;p(n) be the set of all linear estimators based on a direct sample of size n
subject to the additional condition ”w(x,x’)zdu(x)du(x’)<oo, and let Ty,(n) be the
set of all linear estimators of f based on an indirect sample of size n for which
[{w(x.y)*du(x)dA(y)<ee. The additional square integrability conditions are mild; they
ensure that f has finite mean integrated square error if f is bounded.
One natural measure of the accuracy of an estimator f is the mean integrated
square error M( f = EfL; (f -f)*du. By standard calculations,

M(fif) = [Ivaref(x) + (Epf (x)=f(2)}41du(x) | (2.3)

where the suffix f indicates that the mean and variance are calculated for data drawn
from f in the direct case and Pf in the indirect case. We define the surrogate mean
integrated square error M *(f: f) by replacing the variance term in (2.3) by the
corresponding term calculated for the uniform density on brain space

M*(fif) = [var, f(O) + (Ef (0)=-f () ldu(x) | (2.4)

where var, denotes a variance calculated with respect to data drawn from the
probability measure u in the direct case and A in the indirect case. An important
relation between the surrogate and the true mean integruted square error for linear
estimators is given by the following lemma.

Proposition 2.1 Suppose that f is bounded above and below away from zero. Then,
for all f in T p(n) orin Ty (n)

infp f(x) € M(F)/M*(F.f) < supgf(x).

w




2.3 The singular value decomposition of the Radon transform _

The singular value decomposition (SVD) of the normalised Radon transform P
defined in (2.1) is the key to our study of the loss of information about f due to
indirect observaton. To establish notation, let H# and K be Hilbert spaces and
P : H>K a bounded linear operator. Under suitable conditions, there exist
orthonormal sets of functions {@,} in # and {v,] in K, and positive real numbers
{b,), the singular values of P, such that the {¢,} span the orthogonal complement of
the kernel of P, the { v, } span the range of P, and Pg,=b,y, for all v.

Thus P is diagonal in the bases {9, } and {y,}. If a singular value &, is small,
then noise encountered in estimation of the component of f along ¢, will be amplified
by a factor of b;!. Some form of regularization method (Tikhonov and Arsenin,
1977) is needed to deal with this instability, and one such method, based on tapered
orthogonal series, will be exploited in Section 4 below.

In our PET model, A is the space L%(B,u) of functions on brain space which are
square-integrable with respect to the dominating measure 4. Correspondingly, K is the
space L2(D,A) of detector-space functions square-integrable relative to A. Suppose
that X = (X;,X,) is drawn at random (according to 4) from brain spacé B. If a
direction @ is specified by u, = (cos @, sin @), then

PF(s.0) = E(f(X)|uyX = 5}

From this representation it follows at once that P is a bounded operator from L%*(B, u)
to L3(D,A) with norm 1 and, by arguments involving characteristc functons, it is
one-to-one.

The SVD of the Radon transform in this specific setting appears to have been
first derived by workers in optics and tomography; we now review its properties
drawing material from Bom and Wolf (1975, Chapter 9.2.1 and Appendix VII), Marr
(1974) and Leans (1983, Section 7.6). Since the underlying spaces are two
dimensional, we need double indices, specifically veN=
{dm) :m=0,1,2,...; I =m,m=2,...,-m}. In brain space, an orthonormal basis
for L*(B,u) is given by ‘

0,(r.0) = (m+ 1}z (r)e v=(,m)eN, (r8)e B, (2.5)
where ZYX denotes the Zernike polynomial of degree m and order k. Zernike
polynomials  satisfy the  orthogonality  relation J'OlZf+Z,(r)Z,f+z,(r)r dr =

W k+25+1)"'6,, and can-be expressed in terms of the more general family of Jacobi
polynomials. They arise naturally from a study of the action of rotation on L(B.u).

The corresponding orthonormal functions in L¥(D,A) are

v, (s.0) = U, (s)e® v=(m)eN, (s,0)e€D (2.6)




where U, (cos 8) = sin(m+1)8/sin@ are the Chebychev polynomials of the second
kind. We have Pp, = b, y,, with the singular values b, = b, specified by

b, = (m+1)7} v = (l,m)eN . Q.7

The relatively slow decay of the singular values with degree m (independenty of /)
suggests that the costs of indirect observation in the PET problem are not inordinately
large.

Since we work with real densities f, we may identify the complex bases (2.5) and
(2.6) with equivalent real orthonormal bases in a standard fashion. For example

f=Xf,0,=3f,0, where
V2Re(9; ) if 150
51.;;;: ®0.m if =0
V2Im(p; ) if 1<0

and similarly for the real coefficients f’,‘,,,. From now on, we suppress the tildes in the

notation and use whichever basis is convenient.

2.4 Smoothness classes

In our subsequent analysis, we place constraints on the unknown density f over
brain space by assuming it lies in a particular class ¥. For reasons of mathematical
tractability, this class is taken to be a particular ellipsoid ¥ in the Hilbert space
H = L%(B,u), specified by an array of constants {a,} and a threshold c:

F={f=Xfo, : Y alflsc). (2.8)

Ellipsoid conditions can amount to the imposition of smoothness and integrability
requirements. For example in the simple case where {¢,} is the sequence of
trigonometric polynomials on a bounded interval [0,27] in one dimension and
a,~v™P, Yalf? < e if and only if the periodic function f has p square-integrable
derivatives on the interval.

To describe specific eilipsoids in the PET problem, it is useful to transform the
index set N by the change of variables j = (m+l)/2, k = (m—l)/2 into the lattice
orthant N = {j,k) : j 2 0,k 2 0}. Using the real version of the basis {@,}, let

Fo.c = (feH :foo = 1, T Y+1P(k+1Pf < 1+C?). (2.9)

This set is characterised by the following proposition.

Proposition 2.2: The function f in H lies in some Fp.c if and only if f has p weak |

derivatives that are square integrable on B with respect io the modified dominating
measure du,., | (x) = (p+1)(1-|x||>P du(x).




The condition derived in Proposition 2.2 is of course somewhat weaker than requiring
square-integrability with respect to x4 and the reason for the modification of the
dominating measure is discussed in the proof; a similar technical phenomenon occurs
in Cox (1988). Nevertheless, ¥, c can be regarded as imposing a set of smoothness
and integrability conditions : the higher p is, the smoother are the functions allowed in
Fo.c-

How smooth are the functions that we are wrying to reconstruct? In X-ray
transmission tomography, there may be discontinuities, or at least sharp jumps, in
tissue density across the boundaries of various regions. As noted by Natterer (1980,
1986), functions that are piecewise smooth with jumps only along smooth curves lie in
Sobolev spaces corresponding to p < } square integrable (fractional) derivatives. In
emission tomography, with its inherently lower resolution, it may perhaps be
reasonable o postulate somewhat smoother emission densities of the labelled
metabolite. In any case, our theory is presented for arbitrary values of the smoothness
p > 0 wherever possible.

To ensure that elements of ¥, ¢ are bona fide probability densities, some further
restrictions are needed. To have total mass 1, we require foo = 1. By restricting the
constant C that governs the ellipsoid size, we can ensure that f(x) 2 0. This is a
consequence of the following proposition.

Proposition 2.3: Suppose p 2 1 and feF,c. Then
sup [f(x) ~ 1] < c21-pl2. (2.10)
X€E

Equality is attained in (2.10) if f is a linear function of x.

It follows from the proposition that ¥, ~ will be a class of nonnegative functions on B
if and only if C € 2¢~1/2_ Note also that if g = Pf, then

sup lg(y)-1| < sup [f(x)-1] 2.11)

since P is an averaging operator.
3. Main conclusions of the paper

3.1 Arbitrary estimators

We use minimax mean integrated square error as our basic approach to the
quantification of the information available in a given sample. The maximum is taken
over a smoothness class ¥, - of unknown functions £, and the minimum is then taken
over a class of estimators 7, whose specification of takes account of whether the




sample is “"direct" or “indirect”. We define the various classes of estimators as in
Section 2.2 above, and the smoothness classes Fp.c as in Section 2.4.

Suppose we have a sample from a density f and an estimator f of f based on that
sample. An assessment of the accuracy of f that does not depend on a parricular
unknown f can be obtained by merely restricting f to lie in a fixed class, for example
Fp.c for some fixed p and C, and finding the maximum mean integrated square error

R()) = sup M(F:f) . 3.1)
fefp.c

The maximum risk gives an indication of how well any given estimator will perform,
but a large value of R(f) might indicate either that there is not much information in
the sample or that an inefficient estimator is being used. Because we are interested in
the experiment itself rather than any particular estimator, we consider the minimum
value of R(f) over suitable classes of estimators f

Define
rp(n) = _inf  R(f) (G.2)
feTp(n)
_and ‘
r(n) = _inf R(). (3.3)
feTi(n)

These minimax risks quantify the information about the unknown density inherent in
"direct” and “indirect" data sets of size n, in a manner that is independent of the
method of estimation. Comparing their relative values gives an indication of how much
information is lost because data can only be observed indirectly in practice.

We can now state our first main result, which gives exact orders of magnitude for
rp(n) and r;(n) for fixed p and C. The condition placelon C is precisely that needed
to ensure that all elements of ¥, - are positive probability densities. Here and
subsequently we use the notation @,=b, to mean that the sequences {a,} and (b,}
satisfy inf,(a,/b,)>0 and sup,(a,/b,)<=.

Theorem 3.1: For fixed p21 and 0<C<2¥P~D with the definitions (3.1) to (3.3),
rp(n) = (log nfn)Plo+1). (3.4)
and

ri(n) = (1/n)Ple+D (3.5)

The proof of Theorem 3.1 is given in Sections 4 and 5 below. It cun be seen
from (3.4) and (3.5) that the effect of the indirect nature of the observations taken in
practice is to reduce somewhat the rate at which the minimax risk converges to zero.




Suppose, for example, p=1, corresponding to f having square-integrable first weak
derivatives. Then (neglecting t-he logarithmic- term) the rate is reduced from n~12 o
n=13 by taking indirect rather than direct observations. Note that both these rates are
slower than the n~! rate usually obtained for mean square error in parametric
statistics; this is because, even with the restriction that f lies in Fp.c, the space of

possible parameters is infinite dimensional.

Theorem 3.1 also leads to some qualitative conclusions about equivalent sample
sizes. Define the equivalent sample size m(n) to a given indirect sample size n to be
the number of emissions knowledge of whose original positions in the brain would
allow us to estimate f with the same minimax accuracy, so that

ro(m(n)) = ri(n) . (3.6)

Some simple algebra from (3.4) and (3.5) yields the order of magnitude of the
equivalent sample size as

m(n) = n®+/P+Digg . 3.7

Perhaps not surprisingly, the order of magnitude of the equivalent sample size
depends on the smoothness assumptions made on the density f. The smoother f 1s
assumed to be, the larger will be the index p. Hence for very smooth densities the
power in (3.7) will be close to 1 and little will be lost as a result of the indirect nature
of the observation process. However, in reality, we ought not to assume that the true
emission density necessarily varies very smoothly, since tissue boundaries and/or
localised areas of high metabolic activity may lead to discontinuities, certainly in high
derivatives of f and possibly in f itself.

3.2 Linear estimators

More precise numerical quantitative conclusions cannot be drawn directly from
(3.7), because Theorem 3.1 only gives orders of magnitude for the relevant risks. We
are able, however, to give explicit approximate numerical equivalent sample sizes for
minimax risks calculated restricting attention to linear estimatoss and using as a
measure of error the surrogate mean integr'atcd square error M* defined in (2.4). By
analogy to (3.2) and (3.3) define surrogate linear minimax risks r{p(n) and ri;(n) by

rip(n) = _inf  sup M*(fif) (3.8)
feTwin) fe€F,c

and

riny = _inf  sup M*(fif). - 3.9
feTy(n) [€Fpc

The second main result gives leading terms of asymptotic expansions for rp and
ri;- The leading orders of magnitude are exactly the same as those given for the
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corresponding quantities in Theorem 3.1, and so the restriction to linear estimators

does not affect the rates of convergence available. All the constants ¢; depend only on

-’/m the smoothness p and are collected in Table 1. One of our reasons for introducing
' surrogate mean integrated square error is that we have been able to derive these more

| B\L‘L _; /’b precise expressions, and hence obtain numerical results. The other reason is that the
-7 result of Theorem 3.2 is a key step in the proof of Theorem 3.1.

Theorem 3.2: For x > 1, let a(x) denote the solution to alog a=x, and set

72+l = cf*la(cynC?). (3.10)
Then, provided 0<C<2¥P~D),
rip(n) = c3n”ln,(log m+cy) + O(n~'nh (3.11)
= ¢sC¥PD(log nfnPP*D (1 + o(1)) (3.12)
and
. ri(n) = cgCYPD=Pp+D o g(n=P*Ve+Diogp) | (3.13)

The form (3.12) for rfp is more transparent, but the error term can be shown to have
the same polynomial order as the leading term; the error term in (3.11) is of lower
order and so we use (3.11) in numerical computations. Of course, a(x) can be found
numerically when required and is asymptotic to x/log x for large x.

For any particular indirect sample size n, the approximate equivalent sample size
m*(n) can be found: equate the expressions (3.11) for r/p(m*).and (3.13) for r/;(n),
neglect the lower order terms, and solve numerically for m*. For definiteness we take
C?=2P"1, the largest value for which all f in Fp.c are non-ncgative probability
. densides, so long as p2! (Propositon 2.3). Some representative cases are 'given in -
Table 2. As expected, the equivalent sample size increases as the assumed amount of

smoothness rises. If technology allows an order of magnitude increase in the amount
of data collected, then the equivalent direct sample sizes increase by a factor of
between 5 and 8, this factor itself increasing with assumed smoothness. '

For the quantity m*(n) the asymptotic constant of proportionality in the
expression corresponding to (3.7) can be found. A simple calculation uses relations
(3.12) and (3.13), with the error terms ignored, to conclude that

m*(n) = (p+ 1)(p+2)-1 (CS/C6)(P*1)/PC"2/(P+2)n(P+1)/(P+2)10gn {(1+o(1)}.

In summary, our results confirm intuition that for the PET problem, the amount
of information available is still substantial, but it is by no means as great as if a
sample of the same number of direct observations were available.
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4. Convergence rates for linear estimators

The main aim of this section is to prove Theorem 3.2, which gives the asymptotic
behaviour of the surrogate risks (2.4) for linear esdmators. It is a consequence of
Propositions 2.1 and 2.3 that, provided C<2¥P=1), the ratio exact to surrogate mean
integrated square error for linear estimages will be bounded above and below away
from 0 uniformly over ¥, c. Since Typ(n) and 7p;(n) are subclasses of Tp(n) and
T;(n) respectively, it then follows that the orders of magnitude of rp(n) and ry(n) are
bounded above by those obtained in Theorem 3.2 for surrogate linear minimax risks.
Once Theorem 3.2 has been proved, the proof of Theorem 3.1 will be completed in
Section 5 by showing that these are also lower bounds.

4.1 Structure of the linear minimax estimator

We consider the indirect case first; the argument we shall use will apply to the
direct case also. We start by defining some notation. Suppose that f is in I ;(n).
For v and = in N define w,, = jw(x,y)qav(x)’y/,,(y)du(x)dl(y); because of the
condition Jjwzd;tdl < oo, standard functional analysis gives that, in the L? sense,

W(X,y) = 23 Wor 9, (X)W (y)- 4.D

As in Section 2.3 and 2.4, we expand f as Zf,p,. We write W for the infinite matrix
(w,) and f for the vector (f,). The index set of all vectors and matrices will be the
set N; the subscript (0,0) will be written as O for simplicity. Since deu =1 the
coefficient f = 1. Write B = diag(b,), the singular values of the operator P. Let e,
be the vector (8, : #€N). The first lemma gives a matrix form for the surrogate

mean integrated square error of the linear estimator f.

Lemma 4.1 With the above definitions,

M (Fif) = n~l e W(l-ege, )W + FT(I-WB)T(I-WB)f (4.2)

Proof  Write f = vawv. From (4.1) it follows that f = Wn where
7, = n" ' Yy, (Y,). Each Y, has density g = Y g,w, where g = Bf, and for each v
i

Em, = fy/vgd/l = g, so that £, 7 = Bf. Hence Ef?' = WBI, and the integrated square

bias

[(E;f-Hdu = | ER-£)% = |WBf-f]|2 = | (/-WB)]2 (4.3)
If f is the uniform density, then f = e; and so, writing £, for an expectation relative
to the uniform density f, E;n = Bey = e, since by = 1.

By the orthonormality of the w,, the matrix ElrmT= n~lI and so n has
covariance matrix n~!(/—egeqT) under the uniform distribution. Thus the surrogate




variance term
[var, fau = E\|IT - Ef|2 = E\ [ W@n-Eym|? = n ' e W(l-egeg HWT  (4.4)

by a standard multivariate calculation. To complete the proof, substitute (4.3) and
(4.4) into the definition (2.4) of surrogate mean integrated square error.
a

Our second lemma provides an expression for the surrogate linear minimax risk
and gives the general form of the minimax estimator. The smoothness class ¥ is
defined as in (2.8) and (2.9) to be F = (f : fy=1, fTAf < 1 + C?} where we write
A = diag(a2), and assume that gy = l,supa? = oo, and that every f in ¥ is non-
negative.

Lemma 4.2

Cinf sup MT(Fif) = nmt T b7A1-a,rh), (4.5)
feTu(n) f€¥F

where y is chosen to ensure that

7t Y by tad(r eyt - 1), = C. (4.6)

va(
The minimax estimator is given by setting, in (4.1),

Wox =8, for v=0and w,, = 8, b7 (1-7a,), otherwise. 4.7

The form of the minimax estimator is worth noting, since it corresponds to a
diagonal mammix of weights and hence is an estimator of the form
f(x)=n"t b7 u, v, (Y)p,(x). Although the derivation of the estimator has been
performed for theoretical reasons, some examples of the use of estimators of this kind
are given by Jones & Silverman (1989). Similar results to Lemma 4.2 exist for
standard regression (for example Pinsker, 1980, Speckman, 1985) and for other
nonparametric problems (for example Buckley et al., 1988). Our proof is an extension
of that of Speckman (1985, pp.981-982).

Proof of Lemma 4.2 The condition fw(x,y)du(x) =1 for ail y implies that wyy, = 1
and wg, = 0 for v # 0. Let W be the set of matrices W satsfying this condition and
for which ¥ wa,, < oo; the matrices W in W correspond precisely to the estimators f

in Tyy(n). We use Lemma 4.1 and find the minimax value of the expression (4.2)
over Win Wand fin . Let '

J(W) = sup {]I(l—WB)fl]z +n7! trW(l-eOeOT)WT}. (+.8)
€

Let WO be the matrix diag(w,,); we show that J(W) 2 J(W?), and hence that we may
restrict attention to diagonal matrices in W,
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For fixed x in N, x % 0, let F, be the set {f = 1 + fe®c.62f2 < C?). Then

sup | (~WB)f(|? = sup T (Wyo+Wyoe b fr=f)2 2 sup (Weo+(Wer e~ 1) f }2

2 (1-w, b)2C%[a2, 4.9

by picking out the x term from the summation and performing some elementary
algebra. Again by restricting the sum, we have

rW(l~egea NDWT =3 T wh 2 ¥ w2, (4.10)
v#(_) =30 v$0

Restricting the supremum to f in U ¥, and substituting (4.9) and (4.10), we obtain
J(W) 2 sug(l—wr,br)zCZ/af +n7 1Y wk = J(W9) (4.11)
x# v$0
by checking that every inequality in our argument is an exact equality when W is
diagonal.

Let ¥ = supeo(l-weebyc)? a7 2. Now reason from (4.11) as in Speckman (1985)
to obtain (4.7); then substitute into the expression for J( WO) in (4.11) and minimize
over y to complete the proof.

a

To obtain corresponding results for the direct case, set the operator P to the
identity in the whole of the preceding argument. The minimax surrogate risk 7, p(n) is
given by (4.5) and (4.6) with all &, set to 1. The minimax estimator
n~! 3w, 0,(X)e,(x) is a probability density estimate of tapered orthogonal series

iwv

form as introduced and studied by Watson (1969).

4.2 Integral approximation of the minimax risks

In this subsection we explicitly approximate the expression (4.5), and the
corresponding expression for the direct case, to complete the proof of Theorem 3.2.
We set F=F, ¢ as in (2.4) so that a/%=(j+1)"(k+1)". The key to our treatment is the

following approximation lemma, obtained by approximating sums by integrals.

Lemma 4.3 For any n, let z(n) denote a sum over {(j,k): 1<(j+1)Xk+1)<n}. For

fixed r2 0, as n— oo,
Ym D (k+1) = (r+ 1) 'n " Ylog n+2ye=(r+ 171} + O(n"th  (4.12)

where yp is Euler’s constant, and

T (o) Gkt DG+ D (ke 1 = %n‘z(r+2)'1n”’2 0 ™Mogm) . (413)
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Proof For the proof, we transform the sums by replacing j+1 by j and k+1 by k&
denote by 3, the sum over the transformed range {(j,k):j21,k21and1<jksn}.
By symmetry in (j,k), the sum in (4.12) satisfies

(2d) (o]

R
S =3, /K =22k 3 j -2 Xk
k=1 =1 J=lk=1

4
From the reladon ¥ ;" = (r+1)"'t"*!1 + O(¢"), we obtain
i=1

i1
S = 2(r+1)-‘["z Kk T +0(n k™)) = ((r+ ) It 40 (2} - 1
k=1

(n}l (n}]
= 2(r+1)'171’” nZ k=t~ Zk’{(nk'l)’ﬂ-[nk-l]ﬂ'l} - (r+1)‘277’+1 + O(Tl’ﬂ)
k=1 k=1

= 2(r+ 1) 1™ Jlog n+y+0(n 7D} = (r+1) 29" + O(n™), (4.14)
which yields the result of (4.12).
To deal with (4.13), we need an integral approximation, valid for s20 and x21,

Z] = (s+1)7 It # cgxt, 0< ey | ey, (4.15)
Py

(z)
which follows from the bounds (s+1)"![x]**! < "" z < f[”” t5 ds

< (s+1)7 Hx+1)pTh h\saummg that 7 is an integer, it then follows [ha[

relgyr '7 r (n& -r+l - Z r -1 ~1yr+2 J r k—l r+l
L+ =3k z VIAREED W A (SR C T S ARE D W ARG | 2!
k=1 =1 k=1 k=1

n n
(r+2)—lnr+22k-2 +0(7]’+12k_l)
1 1

énz(r+2)"n’*2+0(n’”logn). (4.16)

To  complew the proof of  (4.13), wansform  the sum 1o
Z(ﬂ](j’*‘kwj’k’”-j’k’). Then substitute (4.16) for each of the first two terms,
and use (4.15) to absorb the third term into the error. (]
Completion of proof of Theorem 3.2. We will have ya? <1 if and only if
(j+Dk+1) 7'1/” and so the ( ), in (4.6) and (4.7) may be replaced by ( ) if the
sums over all v are replaced by Z(m with 1 = 7“‘//’. The constants ¢, will be defined
as in Table 3.2. '

In the direct case, we replace ‘T, in (4.5) by T;p and set all b, to 1. Applying

(4.12), equation (4.6) becomes




m Ny X v

CZ

|

n! Z(n)(fiav*af)
nl 3 o (PGP 1P = (1P ke 1P)

= n'ln""'l(c-,logrﬁcs)+n'10(r7p+5). 4.17)

The substitution 7 =¢, y e+ reduces equation (4.17) with the error term omitted to
b the form ylogy =cynC 2. it follows that 77, as defined in (3.40) is the solution for 7 of
this equation. Apply similar manipulations to (4.5) to obtain
rip(n) = a7l Y 0y (1=via,) = c3n~n,(logma+eg) + n710O(Y),
completing the proof of (3.11). To prove (3.12), substitute the definition of 7, into
(3.11), and use the fact that a(x)=(x/logx){1+0(1)} for large x.
For the indirect case, we use the values (2.7) for the b,. Equatdon (4.6) then

becomes

CZ

nmU S ) Gk D G+ TP 1P = (1P (ke 1P)
L = con~1nP*2 + n7tO(nP og ). (4.18)

where cg = (7%/3)p(p+2)" 1 (p+4)~'. Set f},,=(nC2/cg)‘/(P+2), the solution to (4.18)
with the error omitted. Then the solution to (4.18) with the error included saasfies
n=#, + O(log §,). Substitute back into (4.5), apply Lemma 4.3, and perform some
elementary algebra to obtain (3.13), and hence to complete the proof of Theorem 3.2.

a

t To summarise this section, we have shown that, for linear estimators, the indirect
nature of the PET observations reduces the minimax rate of consistency in mean
integrated square error from O {(n/log ny?lP*D) 1o 0(n=P/P*D). It will be shown
in the next section that these rates of consistency are both best possible even if we
allow the class of estimators to be extended to cover all linear and non-linear

estimators.

5. Lower bounds

In this section we establish lower bounds on the rates of consistency of arbitrary
estimators based on direct and indirect observations. These lower bounds show that
the minimax rates obtained for linear estimators in Section 4 cannot be improved by
extending the class of estimators considered. As noted at the beginning of Section 4,

this will complete the proot of Theorem 3.1,
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5.1 Moduli of continuity and a general lower bound for global norms

Our approach is based on Fanc’s lemma of information theory, as developed by
Ibragimov and Hasminskii (e.g. 1981) and Birgé (1983), although a slight extension of
Birgé’s formulation is needed for the indirect observation case. Although we continue
to focus on the PET example, it will be seen that the methodology applies quite
generally to estimation with global norms in linear inverse problems of both density
and regression estimation type. '

The convergence rate in the indirect problem clearly depends on the operator P!
_ mapping the observable density g to the target density f. One convenient approach to
computing convergence rates has two parts: (i) compute a "modulus of continuity”
t(e) for P!, and (ii) argue that a lower bound to the minimax convergence rate is
given by (essentially) r(n™!). This approach separates stochastics and analysis: step
(ii) uses the information theory lemma to bound the estimation error by 7(n~%) while
step (i) is a concrete optimisation problem for the particular operator in question. This
viewpoint was taken recently by Donoho and Liu (1989) in their study of estimation of
linear functionals. We begin with step (ii), which computes a modulus o(§) which is
more convenient for the problems at hand. We return to step (i) in Section 5.2 below.

Suppose, in general, there are available n i.i.d. observations Y(* = (Y1,...Y,)
from a density g(y)dA(y), yeD, and that we wish to estimate f = P~!g. We assume
that feFCH, and that ¥ is a translate f°+H0 of a set Hy that is balanced about the
origin (heHy=-heH;). Let M be a finite-dimensional subspace of H: we write |M |
for the dimension of M and By (§) for the open ball of radius & about O in M. The
norm of the restriction of P to M is defined by |[P|ly = sup{[|Pr|/||All : heM ).
Finally, let M; = (M : By(6) < Hy}. The modulus 0(8) may now be defined as

o(8) = & inf{||P) /] IM |} :MenM;). (5.1)

Loosely speaking, o(d) measures the decay of the singular values of P relative to the
parameter space H, at resolution §. Since o is strictly increasing, a left-continuous

inverse 7(¢) = ¢~ !(¢) can be defined.

Let fe‘T,(n) be an arbitrary estimator based on Y{*). The significance of the
modulus functional is that an (often sharp) lower bound for the rate of convergence of
If - fll over ¥ is given by t(n%). For the proof we need an additional assumption
bounding the Kullback-Leibler information divergence K(gq.88) = f log(ga/gB) 8.44
over G = PF:

For some A<es, K(g,.85) < Allgz~gslg for all 84-83€G. (5.2)

This condition will be satistied provided the densities ¢ in G are uniformly bounded
above and below away from zero. In the context of Theorem 3.1. this is a

consequence of (2.11) and (2.10).




Proposition 5.1 If condition (5.2) holds, there exist constants d, ,dy such that

_inf sup E [f-flF 2 dit¥(dpnd). ' (5.3)
feTi(n) fEF

Proof Choose a subset #° = (fi,....f,} € F that is 25-distinguishable : namely
Ifz = f5l > 26 if a$B. Set g, = Pf, and write K"(g,.85) = n[l0g(g4/85)8adA, the
Kullback-L«ibler discrepancy based on a sample of size n.

Consider the discrimination problem of choosing among the r hypotheses fal
Given an estimator feT;(n), define a discrimination rule @(¥(™) taking values in #°
that picks the closest element in 7 0 f Then, by elementary probability and analysis,

Ef-fI% 2 EAf-fI? = 6%sup PA|f-fll>6

sup Al f=1I Sup iadil s A f=f11>8)
> 5271 S P (If~fall>6) 2 62U T Py (0(Y DS}, (54)

a=1 a=1

since (Y (M)4f, implies that || f—f,||>&, because of the 25-dis. ..guishability.

By Birgé’s version (1983, p.196) of Fano’s lemma, tne average error rate in the
discrimination problem can be bounded below as follows:

LY P S 2 1= (| 5up_ K"(8q:85) +log 2)flog (r=1).  (5.5)

a=1
Combining (5.4) and (5.5), and substituting (5.2), we obtain the lower bound

5 %sup Elf-fI1 2 1-{nA sup [[Pf,—Pfsll} +log2}/log(r-1). (5.6)
feF 1<a.8sr

To make use of this lower bound, we use the metric dimension properties of ¥
and the operator P to construct a suitable set #° for which r is large and
suplle,,—Pf[,II,% is small. From the definition (5.1) of the modulus o, choose a
subspace M of H for which By (48) < Hy and 48| Pl ,/IM|t € 20(48). A useful
lemma of approximation theory (e.g. Lorentz, 1966, p.905) asserts that a k dimensional
ball of radius R contains an R/2 distinguishable subset of cardinality at least 2%.
Setting r=2M! yse this lemma to choose hy,...,h, € By(45) such that
lhg=hgll 2 26 and define the 2&-distinguishable set 7 by f, as fO+ hy for
a=1,...,r. By construction, for any « and S,

1Pfa=PraliR <NPNFIfa=f3l? S 1670 M |o(46) 6467 = 16| M [a(48). (5.7)

Substituting back into (5.6), and performing some elementary algebra, we have
supﬂrEf[IfA—fll2 242 [1 - d;ncz(-’lo’)] where d; is an appropriate constant. Now
choose ¢ so that d, no2(48) = | and the proof of Proposition 5.1 is complete. m




L

The estimation problem we study can be thought of as estimation of Qg , where
geG and Q (=P~!) is an unbounded operator. The term "modulus of continuity"
might be more appropriately applied to a measure of the rate of growth of the singular
values of Q relative to G. Indeed it is in this form that the similarity to the modulus of
Donoho and Liu (1989) is clearer. Now suppose that § is a translate g%+K, of a set
balanced about the origin in K. We denote finite dimensional balls about 0 in K by U.
Define the normalised radius p(U) to be the radius of U divided by the square root of
the dimension of U.

Define a generalised modulus of continuity of Q over the parameter space Ky by

= i , 5.8
#(e) = sup inf [ Quly (5-8)

where the supremum is taken over the class of finite dimensional balls UcK| for
which p(U)=¢e. Notice that if Q is a linear functional (so that (H,||"l ) = R,]*]),

the above definitdon reduces to
r(e) = sup {|Qv] : vl ¢ = € and ek, for |11},
which is the modulus of continuity studied by Donoho and Liu (1989).

It can be shown that # is approximately inversely related to the modulus o
defined at (5.1) in the sease that #(o(8)) < 8. Thus 6~ 1(¢g) 2 #(¢), and so the lower
rate bounds derived from use of o are at least as good as those that would follow from
7. It tumns out that these rate bounds are in fact equivalent for all the applications
discussed in this paper. These results and extensions will be discussed more fully

. elsewhere.

5.2 Completion of proof of Theorem 3.2

We now return to the PET setting to prove two propositions that complete the
Theorem 3.1. Both these are proved by finding reasonable lower bounds to 7(¢).

Proposition 5.2 Subject to the conditions of Theorem 3.1, there exists a constant
dp(p,C) >0 such that

rp(n) 2 dD(logn/n)”/(P*l).
Proof Set H =K =L%*B,z) and P =1/ Let f® be the uniform density and
H0=9-’p'c—f°. A good upper bound for o(§) as defined in (5.1) can be obtained by
considering high dimensional subspaces M subject to the constraint that By (J) < H,.
For large n, let M, =span{op, : al < nP). Then By \8) < Hy when n? <C?/s2.

From the definition of o (&), it follows that

o?(8) < 8% fsup{ M, | : n?P < C*[82 ).
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Using z to denote the characteristic function of a set, |M, | = Y z{1<(j+1)}k+1)Sn}
= nlogn{1+o(l)} by Lemma 4.3. Hence a2(8) s d452("*1)/"/log 5%, from which it
follows that t2(¢) 2 ds(e? log e=2[®*D, so that r2(cn™}) 2 dg(log nfnyPle+1)
Substitute back into Theorem 5.1 to complete the proof. a

Proposition 5.3 Subject to the conditions of Theorem 3.1, there exists a constan:
d;(p,C) >0 such that

ri(n) 2 d(1/npl®+D.

Proof Now take H and H as above, and let K be the Hilbert subspace of L¥D,3)
generated by the orthonormal set of singular functions {,}. This time a good bound
for o(8) must use high dimensional subspaces (with By (8) < Hy) for which in
addition 1P|l 3 is small. For given 7, set M, = span{gjq : n<j+1<n}. Then llPll,%,"
= max{b2 : p,&M,} < 277}, and |M, |2[in]. As in the proof of Proposition 5.2,
By, (8) < Hy if n” < C%/52. Substituting into (5.1), we have, for sufficiently small
S,
c2(8) < 52 inf (207'/0n) : 1P SC2[62) = dp52P+Dp

Consequently r2(e) 2 dgez"’/(”*’z)'and t¥(en~hH 2 dgﬂ—P/(p+2), which, as above, can

be substituted into Proposition 5.1 to complete the proof. o

We close this section by remarking that Ibragimov and Hasrminskit (1981) and
Stone (1982) have shown that the minimax rate of convergence of global mean
integrated square error for direct nonparametric density and regression problems is
n=%2+d) where p is the assumed amount of smoothness and d is the dimension,
d=2 in our case. They consider classes of functions constrained by a Hoélder continuity
condition of order ae(0, 1] on the s® derivative, so that p=s+a. The extra logn term
in the rate of convergence (logn/n)®/®*4) obrained in the present paper reflects the
slightly reduced smoothness imposed by requiring only square-integrability of the p®
weak derivative.

6. Biased sampliﬁg and attenuation

In any practical PET scan, not all pairs of emitted photons are detected. We shall
show in this section that two of the main reasons for this incompleteness of sampling
can be placed within the same mathematical framework, and that our results can, in
part, be extended to account for them. Under mild assumptions, the incompleteness of

sampling has no effect on the minimax rate of consistency found in Theorem 3.1.
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6.1 The effect of the third dimension

Up to now, we have considered the detectors as forming a circle in the plane, and
we have assumed that all the paths of emitted photons fall in this plane. Of course, in
reality the detectors form a ring of finite thickness >0, and the orientation of the line
of flight of the photons is uniformly distributed in R3. We shall assume that the
emission density is constant over the thickness of the cylindrical slab enclosed by the
detector ring. Only emissions taking place in this slab will be considered, since only
they have any chance of being detected at all.

Given any emission, the photon line-of-flight is now parametrised by three
coordinates (s,p,¢’), where (s,p) are the coordinates in detector space of the
projection of the line onto the detector plane, and the vertical angle ¢’ (—n/2<@’<mi2)
is the angle between the line and its projection. The assumpton that the line has
uniformly distributed direction implies that, independently of (s,p), the vertical angle
has probability density 4 cos ¢’ dp’. An emission line will only be detected if its
vertical angle is such that both photons hit the detector ring. If the emission is
detected, only the coordinates s and ¢ are observed.

Condition on a particular s and @, and let [ = 2(1-s2)}, the length of the
corresponding detector tube. Assume that an emission takes place at distance ¢t from
the centre of the tube and at vertical position Z as shown in Figure 6.1. Assume that
the projection of the line of flight of the emitted photons has coordinates (s,p). Let
(=@,,p2) be the range of vertical angles over which both photons will hit the
detectors. For given ¢, and @, the probability of detection will be

?.
f_; icos ¢’ dp’ = Y(sin @1 + sin @,).

We have (see Figure 6.2)

Z[G+dl) if Z< (e+3)d /!
R @2 = ) (4-2)/(4i-1) otherwise .

By assumption, Z is uniformly distributed over (0,d). By elementary calculus, the
expected value of sin ¢, over this distribution of Z is equa!l to

1
M+ndfi

= d'1(£1+t) J'Od/l sin (tan™'u)du + d'l(il—t) fod/I .in (tan™'u)du

d-! j“‘*"“/’sm [tan™! (2/(+1))] dz + d” sin [tan~! {(d—2)/(i=1))]dz

0

=d7 ' ((A+d?/1Mi-1) ' (6.1)

By symmetry, the expected value of sin ¢, and hence the expected probability of
detection conditional on s, and ¢, will also be equal to the expression in (6.1). Note
that this probability is independent of r and only depends on the tube length [
Letting a3p(s,@) be the probability that an emission in tube (s.9) is actually detected,
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it follows from (6.1) that
asp(s.@) = (4(1=-s2)d~2+1}} = 2(1-52)tg~1.

This quantity increases as s increases, reflecting the fact that emissions in shorter tubes
(large s ) are more likely to be detected. We have, finally,

0<(1+4d" 2% =241 < a(s,9) S 1 for all s€[0,1].

6.2 Attenuation

The other effect we shall consider is attenuation, defined as being the loss of a
detection caused by the absorption or scattering of one of the photons in flight. Let
us model the probability of such loss of a photon as it travels between x and x+dx as
u(x)|dx| and assume that u(x) is bounded. Suppose an emission occurs at a point
Xg and that y is the line of flight of the emitted photons. Let y,(xg) and y_(xg) be the
half-lines of y emanating from x;, and assume y intersects the detector ring. By
standard Poisson process theory, the probability that neither photon will be lost is
given by

exp(-J'y’(xO)p(x)dx}cxp{-J'y_(mu(x)dx] = exp{—fy/z(x)dx} = ay(s,p), say .

Just as in Section 6.1, the probability that the emission will be detected depends only
on the detector tube (s,9) and is independent of the emission’s position within that
tube. In general, if both effects are considered, the probability that any particular
detection will not be lost will be a;p(s,p)as(s,p). Both effects are important in

. PET; intensities reconstructed ignoring them can, in practice, be too low by a factor of

three in the centre of the image (F. Natterer, personal communication). A common
technique for correcting for attenuation is to estimate it separately, for example by a

transmission scan.

6.3 A general framework and the extension of our results

The two effects we have discussed can be combined by assuming the existence of
a function a(s,p), 0<a(s,p)<1 such that a positfon emission at (x;,x,) gives rise to a
detection at (S5,®) as defined in Section 2.1 with probability a(S,®) conditional on
(§,D); with probability 1-a(S,®) the detection is lost. It follows from this
formulation that the observed detections will form a biased sample with density in
detector space with respect to dA(s.,¢)

84(5,0) = Pof(s,0) = a(s,0)Pf(s.0)/ [ Pf(5.9") a(s,0")dA(5,0").
D

Let T5(n) be the class of all estimators of f based on a sample of size n from P, f,
and let rg(n) be the minimax mean integrated square error over fin Tz(n) and f in
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Theorem 6.1. Suppose that infpa(s,p) = ag>0, and make the assumptions of
Theorem 3.1. Then o

rg(n) = n=Pl@+2 (6.2)

Proof. The order of magnitude in (6.2) is of course the same as that obtained for
unbiased indirect estimation in (3.5).

Suppose, first, that f is the least favourable density in ¥, ¢ for estmation by
estimators in T;(n). Let n’ = (dagn]. Suppose Y,Y,,... is an i.i.d. sequence drawn
from Pf. Construct an iid. sequence Z;,... from P, f by including each Y; in the
sequence with probability a(Y;)2a,. Let f be the estimator of f based on Z,,...,Z,.
using the minimax estimator in Zg(n”), so that M(f;f)s.’rg(n’). Now let N be the
number of Y;,..,Y, that are included in the Z; sequence, and let fl be equal to f if
N2n’ and 1 otherwise. Since f1 is based on Y,,...,Y,, and f is least favourable for
Ty(n), we have M(ﬁ f)2rn). By an elementary argument, M(_fl )
S M(fif) + P(N<n") [(f=1)2dy, so that rg(n’)2ri(n) = P(N<n'), making use of
Proposition 2.3 and the assumption C<2¥P=1) 10 bound J'(f—l)2 by 1. A crude bound
now suffices for P(N<n’); since N is stochastically larger than a Bi(n,ay) random
variable, P(N<n’) € P {Bi(n,ay) < nayg } = O(n~!) by Chebyshev’s inequality.
We conclude that rg([ingg]) 2 ri(n) = O(n71).

Now reverse the role of biased and unbiased samples throughout the argument.
If Z,,... is an ii.d. sample from P, f, then a sample Y,,... from Pf can be constructed
by including each Z; with probability ay/a(Z,); this quantity necessarily lies between
a; and 1. The analcgous argument to that used above yields that
r,([&naol)érg(n)—O(n‘l) . Applying Theorem 3.1 it now follows that rz(n) has the
same order of magnitude n“’/ (P+2) 3 ri(n). a

There is of course a distinction between a biased sample of # observations drawn
from P,f and a censored sample consisting of all the observations that are detected
arising from n emissions in brain space. The censored sample will consist, in the
notation of the proof of Theorem 6.1, of N observatons from P,f. Implicit in the
proof of Theorem 6.1 is a demonstration that the minimax mean integrated square
error for estimation based on this censored sample will have the same order of
magnitude as r;(n) under the assumption g¢>0.

For the third dimension effect, as the detector ri:., thickness d—0, we have
aw(s.w)-—&d(l—52)‘é and ag—0. In the limiting case, the biased sample density will
be proportional to (1-52)‘51’]'(5.(0). whose ratio to Pf(s.p) is unbounded as s— 1.
Theorem 6.1 no longer applies, but it can be shown that the biased sampling has at
most a logarithmic order effect, in that the order of magnitude of rz(n) lies between

(nlog n)"’/(/’*z) and =P+ This is a consequence of the following more general
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result on singular biased sampling, whosc proof is omitted.

Theorem 6.2: Suppose p21 and 0<C<2¥P~1,

@ If f a(s, @) '(1-s2)"VdA(s,p)<es, then there exists ¢, such that
rg(n)sc,n” -#(p+2) .

(bl If I a(s,p)(1-52)"1di(s,p)<o, then there exists ¢, such that
rg(n)2c,n~ P/(P+2)

(b2) Ifj a(s,p)di(s,p)<es, and sups(l—sz)ij a(s,p)dp<os, then there exists Cy
such that rg(n)zcy(nlog n)=P/®+?.

For a(s,p)=(1-s%)"}, the conditions of (a) and (b2) hold but the integral in (bl) is
infinite.

7. Alternative error measures

Our results can be extended to some more general measures of the discrepancy
between the estimator and the unknown function than mean integrated square error.
We can teat a class of losses that takes into account the closeness of derivatves, as
well as values, of the estimate to those of the true unknown function; these losses take
more account of the "shape” of the function than does ordinary mean integrated square

€ITOr.

Define measures u, as in Proposition 2.2. It is noted in the Appendix that, for

integers q20, the squared norm

[1£12duy + X [1977" flox)'dxy* | 2du,, (7.1)
ry+ry=q . R
1s equivalent to
IF1Z = X G+1k+17f3. (7.2)
J. k20

For non-integer values of g, the norm |||, will be a more general Sobolev norm
(Adams, 1975), although some care will be necessary because of the nonstandard
dominating measures /,; this is a topic for future investigation.

We can now state and prove a theorem that gives the exact minimax rates in the
{qu norm for both direct and indirect estimation. Theorem 3.1 is the special case
¢=0 and it can be seen that the rates avail~ble are both reduced, in a natural way,

when higher order norms are used.




Theorem 7.1: For fixed p21, 0<C<2¥?~V and 0<q<p,

inf  sup EIf-fI2 = (logn/n)e-9)(e+D)
fE'I'p(n) fef,.,c

and

_inf  sup E[f-flI? = (1/n)e-0/e+D)
feT(n) fEf,.cA

Proof The proof is analogous to that of Theorem 3.1 and we shall confine ourselves
to a brief outline of the necessary changes. Define c2=c=(j+1)7(k+1)? and
=diag(c,). To obtain upper bounds, define the surrogate risk M;(f )=
Y, c2{var, fv +(Effv-fv)2}. The result corresponding to Proposition 2.1 is immedi-
ate. As in Lemma 4.1, MJ(f;f)= n~'uTW(I-epeq)WTT + [T(-WB)I|2. As in
Lemma 4.2, the minimax surrogate risk for linear estimates over the ellipsoid 7, ¢ is
given by a7 'Y (cIbi-c,b%a,rY), where y is chosen 1o satisfy
n"tY oy(a,c,b; 2y i-a2b;2)=C2. So long as g<p, we obtain surrogate linear
minimax rates of convergence equal to (n/logn)~@=9/®+D and n=P=9/(o+2) i the
direct and indirect cases respectively. Clearly it would be possible to obtain more pre-
cise results corresponding to Theorem 3.2, but we shall refrain from doing so.

The methods of Section 5 show that these are in fact the exact minimax rates of
convergence for the |||, norm for general estimators. From Proposition 5.1, it is only
necessary to compute the modulus o(8) of (5.1), now with respect to the ll-llq norm
on H. This calculation goes as in Propositions 5.2 and 5.3, even using the same defini-
tions of the subspaces M,. Since the ||| g horm is now used on 4,
IPF, = sup{bfc;? - p,eM,} and By (8) < Hy if nP~9<C?[62. With these

changes, the proof is completed. a

8. Some concluding remarks

This paper has focused on lower and upper bounds for one particular bivariate
density estimation problem for indirect data. The same formalism applies to many
other density and regression estimation problems. The celebrated "unfolding” problem
for sphere size distributions is an example involving univariate density estimation from
indirect data and the singular value decomposition of the Abel transform. For recent
results and further references on this problem, see, for example, Hall and Smith
(1988), Nychka and Cox (1984), Silverman et al. (1988) and Wilson (1988).

Noisy integral equations of the form y;=(Pf)()+¢; can be weated using our
methods, at least under appropriate assumptions on the distributions of (7;,¢;). For
example, if the observation points ¢, follow a known aistribution A(df) and:the errors
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¢; are independently Gaussian (0,02), then the information divergence between the
hypotheses f, and f, is K(P{™, Pi™) = in [(Pf1(2)~Pf2()}?A(db), so that the lower
bound methods of Section 5 immediatedly apply. Upper bound results are given, for
example, by Nychka and Cox (1984).

For a generic one-dimensional problem with singular value decomposition
Pp,=b,p,, b,~v73, and with ellipsoid determined by at=v?e, corresponding to "
derivatives”, the exact minimax rate of convergence of the mean square error in
n-2/2a+28+1)  This should be compared with the exact rate of n=2@+1) for the
corresponding “direct” case. Related calculations for a large class of one-dimensional
convolution equation models appear in Wahba and Wang (1987).

One important topic for future attention is the effect of the discretisation of detec-
tor space due to the finite size of the detectors. It is clear intuitively that if the
number of detectors is sufficiently large relative to the size of the sample collected,
then the minimax rates will not be affected, arid of course it would be interesting to
quantify this notion more precisely. Some PET machines (see, for example, Snyder
and Politte, 1983) are able to use time-of-flight information to provide an approximate
indication of the place in the detector tube where an ernission occurs. This is usuzilly
accompanied by a loss in detector efficiency and hence a smaller sample size n. It
would be desirable to extend our framework to make a quantitative evaluation of this
trade-off. Kaufman, Morgenthaler and Vardi (1983) report some earlier work on this
issue.

Another issue that could be explored is the further extension of cur results to deal
with more generzﬂ metrics on images. Finally there is very little known about the
theoretical performance of algorithms commonly used in practice; our results at least
provide a framework and a benchmark against which particular algorithms can be
judged.

APPENDIX

Proof of Proposition 2.1: The proof is elementary. Consider the direct case first.
Suppose Z is a random variable drawn from the uniform density and that X is a
random variable with density f Then varff (x)/ var, f (x)

= n-lvarw(x,X )/n"lvarw(x,E). Now

varw(x,X) € E{w(r.X)~Ew(x.2)}? = [(w(x.&)=Ew(x.2)}2 f(&)du(s)

IA

supg f [ {w(x.&)~Ew(x,2)}%d¢ = suppfvarw(x.Z)

and similarly varw(x,2) € supB(l/f) vare{(x,X) = varw(x, X )infp f. Thus
varff/varlf, and hence M/M* is bounded between inf f and sup f. In the indirect
case an exactly analogous argument bounds M/M* between infp Pf and suppPf. It




m - X v

follows from (2.1) that infp Pf 2 infg f and that suppPf < supp f, completing the proof.

Proof of Proposition 2.2: We employ Gegenbauer (ultraspherical) polynomials as
normalised in Gradshteyn and Ryzhik (1980, p.827). An orthogonal basis for
L%(B, Hg) is given by the polynomials

9e(x) = (27)~! [07" e U=00Ca uyTX)d8 /. k20, ug=(cos,sin6)T.

Defining the operator (P,f)(s,8)=E{ f(X)Iu,TX=s} where X~u,, the polynomials
@i are the pullback by the adjdint Py of the singular functions e’U~99C%,(s) of
P.P;. This construction of the SVD of P, is explained in Johnstone (1988),
1 following Davison (1981, 1983) but with different notation and normalisations. It can
} be shown that gj; = (j+k+1)"1gj, so that f = ¥ (j+k+1)2 £ ;.
L Let D, = §(0ldx) - idldxy) and D, = ydlox) +idlox,). Since (dfdt)CE=2aC!,
we have, setting @ =0 if j or k<0, D, ¢} = ap®}', and D¢ = agsl;. The raising
of the index from a to a+1 leads us from the original measure 4 of Section 2 to the
family u,,;, so that, for example, the family of derivatives D,p, and D;p, is
orthogonal with respect to u,, not y,.

It is shown in Johnstone (1989) that if r+s=p, then, for certain ccnstants Ciirs all
falling in [(p+1)"%*! (p+1)p %],

JDIDIN P,y = pU S Grk+ DFR[(0f e ity

j2r
k2s

= ¥ Chs(J+ 1P k+ 1P (p+1)f .
j2r

k2s

Standard arguments of analysis complete the proof.

Proof of Proposition 2.3: In the complex form of the basis, we have

f(r8) = X fy (rk+ DR UROZ 1k (),
(j.k)eN’

Zemnike polynomials satisfy Sup |ZzL(r)! =ZL(1) = 1, as a consequence of the
<r<
representation in terms of Jacobi polynomials: Z},,.(r) = r'/P{-)(2r2-1), together

with the results of Szegd (1939, p.163), applied to the polynomials Q/(r)=P%(2r-1)

as s varies. Hence

suplf=~11 € T (+k+ DS
NYD0.0)

The ellipsoid 7, ¢ has exactly the same description in terms of either the real or the

complex form of the basis. Setting x,, = (j+l}”/2(k+l)"/2|f,kl/5, we obtain
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sup sup|f~1| S Csup { X (j+k+1)&(1*1)'”’2(/64'1)",24‘,‘4& D) xj%csu
Fec N’X0,0) N"\(0,0)

<C ek IR+ 1) P2 (k+1)P2 = C 207202,
Ngy&g)(ﬁ RO+ 1D)Pe(k+1)

provided p=1. To complete the proof, note that the linear funcdon 1 + 20-pY2Crcos 6
falls in %, ¢ and satisfies sup |f—1] = c 21-p)2,
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TABLE 1
Constants needed for Theorem 32. Euler's constant yg =0.57722... .

¢, = exp(—cg/cq) cs = (p+ 1)@+ cpito+D

& = T prDexplprcgler) G = HaPpl3(p+4)Ple+D 42/ oD

c3 = p(p+2)~! ¢y = p(p+1) 1 (p+2)7!

cs = 2rg—(p+4)/(p+2) cg = 2ygcy—(4(@+2) 2= (p+1)7?)
TABLE 2

Equivalent direct sample sizes m*(n) to achieve the same surrogate linear
minimax risk over smoothness class p as for an indirect sample of size n.

n=10’ n=10° ratio m(10%)/m(107)
p=1 1.93x10° 1.03x10° 5.34
p=2 4.85x10° 3.12x 108 6.44
p=5 1.29x108 1.05x107 8.09

Figure Captions

Fig. 2.1. The patient and the detector circle

Fig. 2.2. Parametrising the line /

Fig. 2.3. Transforming the coordinates

Fig. 6.1. The two cases for g,
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A smoothed EM approach to a class of problems in image analysis
and integral equations.
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A Smoothed EM Approach to a Class of Problems in
Image Analysis and Integral Equations

By B.W. SILVERMAN, M.C. JONES, J.D. WILSON and D.W. NYCHKA
University of Bath, UK _ North Carolina State University, USA
SUMMARY

There are many practical problems where the observed data are not drawn directly
from the density g of real interest, but rather from another distribution derived from g .
by the applicadon of an integral operator. The estimation of g then entails both
statistical and numerical difficulties. A natural statistical approach is by maximum
likelihood, conveniently implemented using the EM algorithm, but this provides
unsatisfactory reconstructions of g. In this paper, we modify the maximum
likelihood / EM approach by introducing a simple smoothing step at each EM’
iteration. In our experience, this algorithm converges in relatively few iterations to
good estimates of g that do not depend on the choice of starting configuration. Some
theoretical background is given that heuristically relates this smoothed EM algorithm
to a maximum penalised likelihood approach. Two applications are considered in
detail. The first is the classical stereology problem of determining particle size
distributions from data collected on a plane section through a composite medium. The
second concerns the recovery of the structure of a section of the human body from
external observations obtained by positron emission tomography; for this problem, we
also suggest several technical improvements on existing methodology, in particular, a
new pixellation of the circular image.

Keywords: ILL. POSED PROBLEMS; INDIRECT OBSERVATIONS; INTENSITY
ESTIMATION; MAXIMUM LIKELIHOOD; PENALISED
LIKELIHOOD; POSITRON EMISSION TOMOGRAPHY; SMOOTHING:
STEREOLOGY.
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1. INTRODUCTION |
A wide variety of practical problems, in fields ranging from medicine to remote sens-
ing, involve indirect observations. Suppose that events occur on a space Y according
to a nonhomogeneous Poisson process of rate g(y). These events cannot be observed
directly; instead, an event at a point y gives rise to an observable datum at a point x in
some space X. The observed datapoints fall as a nonhomogenecous Poisson process on
X with intensity f(r), where f and g are related by the integral equation

fx) = [K(x.y) g) dy . (LY

Here, K(x,y) is a non-negative kernel function which is assumed known. In some
contexts X and Y are the same space, but we shall see that this is by no means always
the case.

In this paper, we shall intoduce and discuss a simple general approach to the
estimation of the non-negative function g from such indirect data The general prob-
lem, and our solution to it, will be discussed in two particular contexts. The first,
involving univariate functions, is the classical stereology problem of determining
particle-size distributions from data collected on plane sections through a composite
medium. The second is an interesting image processing problem, the recovery of the
structure of a section of a radioactive emission intensity in the human body from exter-
nal observations obtained by positron emission tomography (PET). Our intention is to
contribute concretely to these problems and also methodologically more generally.

Equations of the form (1.1) are called first kind integral equations and have been
the subject of much study by numerical analysts, mainly from the point of view that
the function f is observed accurately. Most of this work does not take account of con-
straints on g. Another, more statistical, problem that has been studied is the case where
values of f itself are observed subject to random error; see, for example, Titterington
(19852) and O’Sullivan (1986). The relationship of this statistical problem to the one
we shall discuss is precisely that between regression and density estimation for directly
observed data. The problems have some similarities but sufficient differences to make
distinct approaches appropriate.

Our work builds on the paper of Vardi, Shepp and Kaufman (1985) who give a
good introduction to the statistical aspects of the PET problem, and provide a method
for its solution based on the EM algorithm (Dempster, Laird and Rubin, 1977, Little
and Rubin, 1987). In general, a natural statistical approach to the estimation of g is by
maximum likelihood (ML) and it is to the solution of the ML problem that the EM
algorithm is addressed. However, as we shall see, ML reconstructions of g are unsatis-
factory. As in nonparametric curve and surface estimation generally, ML yields "noisy"
or "spiky" estimates that do not fully reflect knowledge about the structure of the prob-
lem under consideration, and some kind of smoothing is necessary to provide good
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estimates of g; see, for example, Silverman (1985a, 1986) and Besag (1986). This is
because of the high or infinite dimensionality of the parameter space. In the problem
we are considering, the ill-posed nature of the inversion of the integral equation (1.1)
exacerbates this difficulty. The classical mathematical work on integral equations (e.g.
Tikhonov and Arsenin, 1977) makes it clear that smoothing would be necessary in
numerical reality even if f were observed to arbitrary accuracy, for example, from an
infinite number of observations.

The EM algorithm is an iterative approach that increases the likelihood of the
estimate of g at each iteration. Each stage of the algorithm consists of an E (for expec-
tation) step and an M (for maximisation) step. Our proposal is to introduce a third S
(for smoothing) step at each iteration where the current estimate of g is smoothed in a
suitable way. The EMS algorithm maintains various advantages of the EM algorithm
but appears to eliminate some of its disadvantages. Using very simple smoothing
schemes, we have found that the algorithm converges, in a relatively small number of
iterations, to good estimates of g. For the problems we shall discuss, a little smoothing
goes a long way.

The general structure of such smoothed EM algorithms for indirect observation
problems is set out in Section 2. The stereology ciample is discussed in detail in Sec-
tion 3 and the PET example in Section 4. Our treatment of the PET example incor-
porates some other algorithmic improvements over those of Vardi er al. (1985) and
others. Some theoretical background is given in Section S that heuristically relates the
EMS algorithm to a maximum penalised likelihood approach in which the penalty term
is quadratic in the square roots of the intensities.

2. THE EM ALGORITHM AND SMOOTHING

2.1 Notation and Preliminaries

For practical reasons, the data with which we are concerned arise in histogram
form, so the data space X will be divided into bins. Index the data bins by ¢=1,...,T
and denote the observed counts in these bins by n(r), t=1,...,T. To facilitate recon-
struction, we also introduce a discretisation of the space Y into bins; let s=1,...,S
index these “reconstruction” bins. Note that the discretisation of the data-gathering
aspect of both our applications is an irremovable physical constraint, while the recon-
struction discretisation arises from algorithmic considerations. We shall seek to recon-
struct the discretised version of g in (1.1), denoting expected total occurrences in bin s
by A(s), s=1,...,5. The discretised version of the kernel function wiii be denoted by
p(s,t), s=1,...,8, t=1,...,T; assuming that g is constant within each bin, p(s,t) is the
integral of K(x,y) over x in bin ¢ and y in bin s, divided by the size of bin 5. Write
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q(s)=Y p(s,0), s=1,...,5. Neglecting the variation of X over bin s, we have the
s

appealing interpretation

p(s,)/ q(s) = Prob{datum counted in bin ¢ | datum is observed,

having arisen from an event in bin s).

Define k(s,t) to be the number of events occurring in bin s which contribute to
the count in bin ¢. It is immediately clear that all the k(s,t)’s are independent with,
for each s and ¢,

k(s,t) ~ Poisson {A(s)p(s,2)}.

The observed data arise simply from these as n(t) = Y k(s,¢) so that, for r=1,...,T,
k)
n(¢) ~ Poisson (T A(5)p(s.0)], @.1)
s

independently for each r. On the other hand, an important set of unobservables is the
s-bin counts, m(s) = ¥ k(s,t), s=1,...,5. All these m’s are also mutually independent
4

and distributed as:
m(s) ~ Poisson {A(s)q(s)}.

Define m = (m(1),....m(S)T, n = (n(1),...,a(THT , 2 = (A(1),...,A(S)T and k to
be the (SxT) matrix with (s,r)'th element k(s,¢).

22 The EM Algorithm

Consider the estimation of 4 by maximising the log likelihood, /(n|4), based on
the data n. These data can be regarded as an incomplete version of the complete data,
k, which we would like to have been able to observe. Dempster et al.’s (1977) EM
algorithm, applied to the PET version of the present context by Vardi er al. (1985),
then gives a two step iteration for increasing the likelihood of a current estimate A
of A. In the E step for the current problem, we find the expected value of the complete
data, given the incomplete data, under the current estimate of parameter values; in the
M step, we find the ML estimate of the parameters using the estimated complete data
from the E step. From Vardi er al. (1985), this gives:

E STEP

AD(s5)p(s,0)
Y AErp(r

r

compute I?(s,t) = n(t) for each s and ¢,




M STEP
set A0*D(s) = T k(s,1)/ q(s) for each s.
t

The two steps combine to give the simple updating formula

: ; )/ g(s)
20+ D5y = 2.6 (1) 2820 2.2)
(s) (s) ;n ) Zl(‘)(")P("J)

for s=1,...,5. An even simpler interpretation of EM is possible in this case, most obvi-
ously if we treat m rather than k as the complete data: estimate m by iz current
expectation, M), given 1%) and n, use M) as the "new darta”, then iterate.

As well as its conceptual simplicity, the EM algorithm has other apparently
appealing properties. First, it necessarily increases the log likelihood at each iteration
(Dempster er al., 1977) and, since the log likelihood at (2.1) is concave, convergence
of the algol:ithm is guaranteed in theory. There is not usually, however, a unique ML
solution (certainly not when S > T), so the EM converges to one of the reconstruc-
tons maximising the likelihood, that one depending on the choice of the inital values
2@, A second consideration is that each 1()(s) is automatically non-negative pro-
vided the initial image is. Taking account of this non-negativity constraint can be
important; see, for example, Bertero and Dovi (1981). In methads other than EM, this
constraint needs to be incorporated at considerable cost in computational complexity or
else ignored with derimental repercussions for quality of reccastruction. Thirdly, we
noté, as do Vardi er al. (1985), that the EM updating formula (2.2) also arises directly
from the likelihood at (2.1) as an iterative solution to the Kuhn-Tucker conditions for a
maximum. The EM is just one possible optimisation algorithm for this problem and
the question arises whether there are advantages to be had using an altemative optimi-
saton technique. Kaufman (1987) investigates this in the PET context. Althcugh it is
possible to accelerate the optimisation in its carly stages, the EM proves to be a sensi-
ble approach to the computation of ML estimates. Kaufman (1987) argues that it can
be thought of as a "preconditioned” stecpest.ascent method, having properties similar
to steepest ascent in many situations and considerably improving on it in others.

Vardi er al. (1985), however, found that in practice the convergence to an ML
estimate is exceedingly slow. Furthermore, as the iterations proceeded beyond a certain
point, the quality of the reconstructions actually deteriorated, and we shall see, in the
computationally simpler problem of Section 3, that an ML estimate itself is unsatisfac-
tory. Their proposed solution was to start with a uniform image and to abandon any
attempt to iterate to convergence; instead. they terminate the process after a chosen
number of steps (probably a long way from convergence). In this way, Vardi et al.
(1985) obtained pleasing reconstructions for the PET problem.
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We feel it is philosophically more satisfactory to abandon the aim of finding ML
estimates altogether and to replace the technique just described by an explicit smooth-
ing procedure. Also, we seck estimates that are the realisable limits of an algorithm
that actually converges in a reasonably small number of iterations and that yields
results independent of the starting configuration. We must stress, however, that we
wish to build on, and not to disparage, the very important work of Vardi er al. (1985),
without which the present paper would not have been possible. Indeed, Vardi er al.
themselves suggested that some smoothing might improve PET reconstructions.

22.1 The EM,, Algorithm

In order to provide smoother csﬁmates of A than those given by ML, an appealing
approach is regularisation or penalised maximum likelihood (see, for example, Silver-
man, 1985b, and Titterington, 1985b): instead of maximising /(n|1), maximise

Im|A) - RQA). (2.3)

" Here; ~R(3) might be af’er'prcm a log prior density for 4 in a Bayesian framework
or as a penalty term which discourages roughness in a penalised likelihood approach.
Choosing A to maximise (2.3) can in principle be achieved by EM methods too, as
noted by Dempsier er al. (1977), to give, say, an EM,, algorithm:

E STEP as for EM,
M, STEP
fiad 24*D by maximising ¥ 3 [ £(s,1) log{A(s)p(s,0)} = A(s)p(s,0)] = R(A).
: ¢t

Repeating E and M, steps affords convergence to a maximum penalised likelihood
solution as required; what is more, conergence can be expected to be rather quicker
than the basic EM.

Computational considerations, however, militate against performing the M, step
at each iteration of an EM, algorithm; comparison with the trivial M step of EM for
Poisson likelihoods emphasises the extra burden. The M,, step involves a full penalised
likelihood reconstruction for the case where the data depend on the intensity function
of interest through a Poisson likelihood. In any context where 4 is a pixel image, the
important work of Greig, Porteous and Seheult (1986) casts doubt on the existence of
any method at present for actually achieving the penalised likelihood solution, although
of course it would be an interesting avenue for investigation to apply the image pro-
cessing methods of Besag (1986) in an M, step.
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2.3 The EMS Algorithm
Our proposed approach is slightly ad hoc, but is very straightforward. We suggest
introducing a further step which smooths the result of E and M steps in a simple way.
This gives an EMS algorithm:
E STEP as for EM,
M STEP as for EM, except call the output g#¢*1), say,
S STEP

“smooth u'*V to give 44+D),

For the problems of interest in this paper, this becomes the iteration: update by (2.2)
and smooth. (If, as in the PET application of Section 4, the reconstruction bin sizes
{a(s)} differ, apply the smoother to the u(*1(s)/a(s) values then multiply the
resulting values by the corresponding a’s to get A4*D.) This EMS approach is the
major tool used throughout the rest of the paper.

Choice of appropriate smoothing method is problem dependent and will be con-
sidered in Sections 3 and 4 although it tumns out that similar methods in both contexts
prove useful even though the perception of what consttutes "smooth” is somewhat dif-
ferent in the two problems. Sensible smoothing schemes should retain automatic non-
negativity. We no longer have an appealing direct interpretatdon of a reconstruction
obtained by EMS in terms of the solution of a specified optimization problem,
although the work of Section S yields a heuristic relationship with such an approach.
This backs up our empirical evidence which suggests that sensible smoothing regimes
allow the EMS algorithm to converge, and that at an increased rate compared with
EM, due to the smoothing. Moreover, it seems from our empirical experience that we
can expect convergence to a unique solution. ' '

3. A FIRST APPLICATION : STEREOLOGY

3.1 The Problem

A classical problem in stereology is the following. A three-dimensional specimen
consists of some translucent material in which are situated a number of opaque non-
overlapping spheres. Interest centres on the size distribution of these spheres; in an
example considered later, they represent tumours in the liver of a mouse. It is not pos-
sible to observe the three-dimensional internal structure directly. Rather, a thin slice is
taken through the specimen at some random orientation. When this section is exam-
ined, usually under a microscope, a number of circles is observed, each corresponding
to a slice through one of those spheres which happen to be cut by the section. Our aim
is to recover the intensity of the radii of the spheres in the medium from this sample




of circle radii.

We make the standard assumption (that cannot be more than approximately true)
that the centres of the spheres are distributed according to a three-dimensional Poisson
process with constant intensity. The sphere radii are bounded above by Y, say, a con-
stant determined by the practical context. A further practical constraint introduces a
lower bound &, say; circle radii smaller than £ cannot physically be observed. Thus, we
are concemned with a truncated circle radius intensity f(x), xe X =[¢,Y], and seck to
reconstruct a similarly truncated version g(y), y € Y =X, of the sphere radius intensity.
Both ¢ and Y are assumed known. The relatonship between f and g can be written in
a form directly comparable with (1.1):

Y
HORES! i(‘y—{—l—i%f g0 dy. 3.0
Here, Ig(y) is the indicator function (1 if y € ®, 0 otherwise) and ¢, is a constant. This
equation was first derived by Wicksell (1925) for the case £ =0 and extended to £#0
in many subsequent papers (see Cruz-Orive, 1983). The ill-posedness of the kemnel
function in (3.1) arises, intuitively, because circles of a given radius can be obtained
from sections through spheres of any radius larger than that observed.

Discretisation of (3.1) proceeds exactly as set out in Section 2. All quantities
defined there transfer directly to the stereology context and we retain the same notation
in this section; s-bin quantities are now to do with sphere radii, s-bins with circle radii.
In the real data example treated briefly in Section 3.4, circle radii were, indeed,
recorded in binned form only; these bins and our reconstruction bins are all of equal
width. The form of the kernel in (3.1) allows exact computation of the p(s,t)’s in a
straightforward manner.

Alternative approaches to estimating g in (3.1) are reviewed by Cruz-Orive (1983)
and Nychka et al. (1984). Cruz-Orive (1983) also discusses some other practical diffi-
culties which, for simplicity, we have omitted. Not all that many previously proposed
solutions have been statistical in nature and, of these, very few have resuited from a
nonparametric approach. A notable exception is the method proposed by Nychka ez al.
(1984) which is discussed in Section 3.3; this naper inspired much of the simulation
and practical work reported here. Further details of the application of the EMS algo-
rithm to the stereology problem and more empirical evidence are reported in Wilson
(1987).

32 EM and EMS Reconstructions for Simulated Data

In this section, we apply EM and EMS algorithms to simulated data from the
stereology problem. Following Nychka er al. (1984), we chose £¢=0.04 and Y=0.4
and considered two particular choices of g: appropriately truncated versions of a
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Weibull density, g(y) =aBy? ! exp(-ay?), with parameters =12 and #=0.1, and
of a mixture of two normals, one with mean 0.15 chosen with probability 0.7, the
other with mean 0.275 and both with standard deviation 0.03. This scaling (in millim-
eter units) and the Weibull density were chosen to imitate theoretically the real data
situation described in Section 3.4; this is Nychka et al.’s "Experiment 1". The bimodal
normal mixture follows "Experiment 3" of Nychka et al. and was chosen to test the
ability of the reconstruction methods to recover distinct peaks in an intensity. It is not
difficult to generate data (from f) by mimicking the physical process: choose a candi-
date sphere radius from the distribution with density g, decide whether this sphere was
cut by a random section using an acceptance/rejection technique (resulting in a sphere
radius from the length-biased distribution corresponding to g) and then determine the
corresponding circle radius by slicing the sphere at a uniformly distributed distance
from its centre. For further details, see Wilson (1987). Again to be roughly compar-
able with the work of Nychka er al. (1984), we generated an average of 190 circle
radii in each simulation of the Weibull case and 330 for the normal mixture. These
data were grouped into T = 50 bins.

3.2.1 En Reconstructions

Typical ML estimates, using S = 50 reconstruction bins, are shown in Figs 3.1 and
3.2 for the Weibull and normal mixture cases, respectively. In these and all remaining
figures in Section 3, g is represented by a broken line and the estimate of g by a solid
line. The spiky nature of these EM reconstructions has already been alluded to; Figs
3.1 and 3.2 are genuinely representative of the kind of reconstruction always preferred
by ML and are clearly unacceptable as estimates of g. Incidentally, in this instance
early termination of the EM algorithm, even though started from a uniform initial allo-
cation, is not an effective remedy.

3.22 Local Smoothing

Smoothness of an intensity function can be defined in a number of ways. For
current purposes, however, a heuristic notion of smooth as (in binned form) values in
neighbouring bins "differing little" will suffice. We propose using a very simple
smoother to have this effect; we claim no "optimality" properties for our choice, but
appeal to its practical effectiveness and simplicity as justification for its use. The
“scheme is a weighted average of a bin value and the values of its nearest neighbours,
using binomial weighting factors. Recalling the notation used in the definitdon of the
EMS algorithm in Section 2, we set

A0 (5y = 27 t [rz-e-jj] p* D (s+r).

r=-j
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Typically, such J-point smoothing, where J =2j+1, is used for J =3,5,7,9 or perhaps
11; the greater is J, the more smoothing is applied. Various modifications are possible
at the ends of the range of bins; ‘Wilson (1987) describes the one used here.

3.2.3 EMS Reconstructions

In this form, EMS maintains the EM property of automatically scaling successive
estimates so that ¥ A()(s) =N for i2 1, where N=Y n(¢) is the total number of cir-
s t

cles in the section. We then normalise and join the estimated values at bin midpoints
by straight lines to obtain a frequency polygon, calling this §; it is the density estimate
displayed in the figures. '

Employing the EMS algorithm with 5-point smoothing to the normal mixture data
which gave rise to Fig. 3.2 produces Fig. 3.3. The improvement in quality of recon-
struction with the introduction of smoothing is strikingly dramatic. Indeed, this EMS
reconstruction provides an excellent estimate of g.

Not all EMS estimates, however, provide quite such good reconstructions. To

measure the discrepancy between g and g, we essentially use the L, distance
Y

[18(») - §(»)| dy, approximated by
£

s
A =bz Ig,—f,l,

s=1
where g, and §, are the values of g and § at the midpoints of the s-bins, and
b=S"Y(Y-¢) is the bin width. In all, ten different datasets (of essentially the same
size) were generated from the normal mixture model and EMS reconstructions (with
J=5) performed. According to A, § of Fig. 3.3 is the second best of the ten
(A =0.1251), the best having A =0.1198 and the worst corresponding to 4 =0.3243.
This worst reconstruction is shown in Fig. 3.4. One striking feature in this picture is
the poor behaviour of § near . This effect was observed in a minority of cases and
appears to be due to an inherent numerical and statistical instability, possibly con-
nected with the lack of information at small circle radii. Nychka er al. (1984) noted the
same phenomenon; Wilson (1987) shows that the difficulty sometimes disappears if the
data are re-binned. The other disappointing aspect of this § is its behaviour where
there is a trough in g; having said that, there is certainly still some hint of the underly-
ing bimodality or, at least, of a strong indication that g is not unimodal. Most of the
ten simulated datasets resulted in rather better estimates of g, however.

A further important advantage of the EMS algorithm over basic EM is also well
illustrated by these simulations, namely, an enormous improvement in the computer
time taken to reach the solution. Using the convergence criterion "stop as soon as
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JA+D < 262 < 1076 |A¢)]| 2 ", the EM reconstruction of Fig 3.2 took 484 iterations
to complete; the EMS reconstructions of Figs 3.3 and 3.4 took just 39 and 29 itera-
tions, respectively. Since the binomial smoothing step adds only a very small extra
computational burden to each iteration, these savings are impressive. Uniqueness of
EMS reconstructions also seems to hold: in experiments with different starting confi-
gurations, we have never obtained more than a single solution per dataset.

We have not considered automatic choice of the smoothing parameter J; rather, a
more subjective approach has been found to work well. Reconstructions using J =3,
then J=35, 7 etc., can be fooked at in turn, the process stopping when major features
in the estimate start to disappear. In practice, only a very few (at most 4 or 5) such
reconstructions need to be calculated; that even this is not computationally over-
demanding follows from the excellent convergence rates discussed above.

An EMS reconstruction in the Weibull case is shown in Fig. 3.5; 9-point smooth-
ing turned out to be suitable here. Fig. 3.5 is based on the same dataset as the EM
reconstruction of Fig. 3.1; the vast improvement brought about by the smoothing is
again impressive. Ten datasets were simulated in this case, too; Fig. 3.5, with
A =0.1947, is only the seventh best estimate of these, thus demonstrating that a good
correspondence between true and estimated densities is quite typical of our Weibull
reconstructions. Even in the worst cases, the estimate of the density’s tail is pleasingly
accurate and the reconstructions always indicate an increase in density near & serious
discrepancies arise only in the estimate of the magnitude of this effect. The EM recon-
struction of Fi.g. 3.1 took 328 iterations to arrive at; typically, EMS reconstructions —
here with a greater degree of smoothing than in the normal mixture case — took fewer
than 20 iterations each to converge.

3.3 Remarks on Nychka et al. (1984)

The reconstructions of Section 3.2.3 can be compared with those of Figs 7 and 9
of Nychka et al. (1984). The immediate impression is of a broad similarity of the
results of the two approaches; that our reconstructions are certainly no worse than
Nychka er al.’s is important, since we believe that the EMS approach of this paper has
several advantages over the cross-validated spline approach of Nychka er al. (1984).
Nychka et al. take a regression approach to what is a density estimation version of the
integral equation problem. This is done by treating the data histogram values as if they
were values of the intensity function f observed with error. Some justification for this
is to appeal to the asymptotic result that the "error terms” will have zero mean, be
jointly normal and weakly correlated; the latter correlation and unequal error variances
were then ignored. The usual penalised least squares approach to such problems could
then be applied with the value of the smoothing parameter involved chosen
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automatically by the well-known method of generalised cross-validation (see Nychka er
al., 1984, for references). The advantages we perceive for our EMS algorithm over
Nychka er al.’s approach are its computational simplicity and speed, its more natural
incorporation of the non-negativity constraint, and the fact that it attacks the Poisson
likelihood directly.

34 A Real Data Example

The result of applying the EMS algorithm (with J=5) to some mouse liver data
considered by Nychka et al. (1984) is given in Fig. 3.6. This reconstruction arises from
a section through the liver of a mouse in which there are a number of malignant
microtumours induced by injection of a carcinogen. A total of 154 tumour cross-
sections were observed; we took £=0.038, Y =0.51 (although the plot stops at 0.4;
beyond this, § =0), T=64 and S =150. Fig. 3.6 is directly comparable with Fig. 6 of
Nychka et al. (1984). The outstanding feature of this comparison is, once again, a
remarkable similarity in reconstructions obtained by the two approaches. We have pre-
ferred, perhaps, a little less smoothing of the two; any minor differences can be largely
attributed to this. .

This particular mouse liver was, in fact, completely dissected and the histogram
of sphere radii found is also shown on Fig. 6 of Nychka er al. (1984). In one sense,
this forms a true distribution; comparing the reconstruction with the histogram reveals
a generally good agreement, except for discrepancies in the magnitude and slope of the
density near €. However, this comparison is not entirely fair: we have been estimating
a (presumed) smooth density of malignant tumours in mouse livers, of which the histo-
gram is itself another (unsmooth) estimate, albeit based on a much larger sample of
directly observed spheres.

4. A SECOND APPLICATION : POSITRON EMISSION TOMOGRAPHY

4.1 The Problem

PET is a medical diagnostic technique that studies the pattern of blood flow and
metabolic activity in an organ by producing an indirectly observed image of a planar
section through the patient’s body. Such pictorial representations of internal structure
have considerable appeal as a means of diagnosing certain diseases and in assessing
the effectiveness of treatments. Some of the material of this section is a general
review of the problem, but we shall suggest several technical improvements on exist-
ing methodology in addition to the use of our smoothed EM procedure. One pam‘cular
advance is a new discretisation of the "body space” Y which affords considerable com-
putational economies; see Section 4.1.2.
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PET operates as follows. A radioactive tracer — here, a substance (often glu-
cose) emitting positrons — is introduced into the area of interest and the occurrence
of these emissions is recorded by an array of detectors arranged around the body; this
apparatus is a tomograph. The amount of radiation given off at any point reflects the
ﬁ degree of activity present there, so the overall "emission density” provides the required

portrait of internal structure which we estimate. The physics of PET is described by
Vardi et al. (1985) thus: "When a positron is emitted, it ‘finds’ a nearby electron and
annihilates with it. The annihilation creates two X-ray photons that fly off the point of
annihilation, at the speed of light, in (nearly) opposite directions along a line with a
completely random (i.e. uniformly distributed in space) orientation. There is an array
of discrete detector elements surrounding the [area of interest], and the two photons
are detected in coincidence by a pair of detector elements that define . . . a tube. rhus

the only information acquired when a pair of detectors count a coincidence is that the
* annihilation occurred somewhere inside the tube defined by the two ‘firing’ detectors”.
This is illustrated in Fig. 4.1; see also Fig. 1 of Vardi et al. (1985) or Kaufman (1987).
Fig. 4.1 is a planar view. It is important, however, to bear in mind the three-
dimensional nature of the' emission process and, consequently, the finite "depth" of the
detectors; the effect of this (not considered by Vardi er al., 1985) is discussed in Sec-
tion 4.1.4. The tube counts comprise the data n. Note that the tube space X differs
from the body space Y.

For more details on physical aspects of PET, see Vardi et al. (1985) and Hoffman
and Phelps (1986). PET is a fairly recent innovation, many aspects of which are stll
at the development stage. Research interest in PET covers several disciplines; see
Phelps, Mazziota and Schelbert (1986) for an up-to-date account, including an idea of
the scope of medical application. Other kinds of tomography exist. Transmission
tomography has had more impact: X-ray wransmission tomography and related tech-
niques are well-known, but are mathematically quite distinct from PET so the methods
discussed here do not apply. Our methods can be modified for use, however, with
another emission technique called single photon emission tomography (SPECT) which
is little different, as far as mathematical or statistical analysis goes, from PET; see, for
example, Geman and McClure (1985, 1987).

4.1.1 The Detectors

There are a number of detector configurations in current use at PET installations.
We follow Vardi er al. (1985) in considering a single stationary circle of D detectors,
each of equal size and with no gaps between them. Without loss of generality, the cir-
cle has unit radius. This is shown in Fig. 4.1; as there we take D = 128 in all our
illustrations (D is often a power of 2). Practical variations on this set-up include alter-
native detector array shapes, gaps between detectors, two or more such arrays and
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movement of detectors. All T = }D(D-1) pairs of detectors form the tubes or data
bins. Although the PET problem is a bivariate (spatial) analogue of the univariate
application of Section 3, it will remain convenient to index tubes by r = 1,...,T in

what follows; we note that for computational purposes, however, the spatial location of

detector tubes is best described by a polar coordinate system.

4.12 Discretising the Disc

The space Y is the disc enclosed by the circle of detectors. We require a discreti-
sation of this disc on which to reconstruct and display emission densities; discretised
functions are piecewise constant taking a single value across each bin or pixel. Many
workers, including Vardi er al. (1985), simply superimpose a square grid of pixels over
Y, but this approach suffers from important computational disadvantages compared
with discretisations that better take into account the geometry of the situation. By
more properly exploiting circular symmetries, it is possible to make substantial savings
in both storage and time requirements. In order best to represent an image by a step
function, all pixels should be, at least approximately, of equal area and shape.

Suppose we allow D; = 2* divisions of the detector circle into arcs of equal
length, for some integer k. Then, our proposal is to use the discretisation shown in
Fig. 4.2, constructed as follows. First divide the disc into R = D,/4 equal-width rings
by drawing circles of radius i/R, i=1,2,...,R; for each i, set j=[logyi], where [x]
denotes the largest integer strictly less than x, and divide ring i into 2/*3 pixels of
equal size and shape. Thus the pixellation is achieved by doubling segmentations of
the circle at appropriate stages, at the expense of introducing "seams" between the 2/th
and (2 +1)st rings, j=0,1,...,k=3. Except for the innermost ring of all, each pixel is
of the same general shape, while the ratio of maximum to minimum pixel area is
strictly less than 2. For D = 128, the choice Dy = D yields what we regard to be too
coarse a grid. Rather, we employ D; = 2D pixels in the outermost ring and identify
pairs of adjacent pixels with detectors. In this application, s = 1,...,S refer to these
pixels. ‘

Kearfott (1985) and Kaufman (1987) also recognise the advantages to be gained
by using such a "ring grid". Kearfott’s (1985) simple discretisation of the disc results
in the division of the central area into very many long thin pixels, to the obvious detri-
ment of discretised picture quality. Kaufman (1987) presents a discretisation which
overcomes this problem. Kaufman’s ring grid is, however, rather less easy to describe
than is ours: "The ith ring is divided into n; sectors so that n; = j; x k; where j; is a
small integer and k; is a divisor of D," but there appears to be no simple scheme for
choice of these values. Further, Kaufman (1987) uses variable ring widths — although
the widths "vary no more than about 25 percent” — to obtain pixels of equal area; it is
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not clear that this complication is worthwhile when pixels vary correspondingly more
in shape. A full description of Kaufman’s pixellation of the disc thus requires specify-
ing values of j, k and width individually for each ring. For D = 128, Kaufman’s
(1987) discretisation results in 12,884 pixels, while the comparable grid in Fig. 4.2 has
rather fewer — 10,924; each has R = 64. The value of these circularly symmetric
discretisations for computational purposes is best reflected in the number P of different
possible relationships of pixels to tubes, modulo rotations. For Kaufman’s (1987) grid,
P = 200; for ours, P = R = 64 — just one per ring. These numbers compare with
P = 2,080 for a comparable square grid discussed by Kaufman (1987).

4.1.3 More on the Problem

We have no real data from a PET installatdon, but rather seek to reconstruct a
relevant mathematical model (or mathematical phantom) of an image using simulated
data. The phantom we use is (essentially) that of Vardi er al. (1985); in Fig. 4.3, we
present a grey-level picture of that phantom, using 64 grey-levels to reflect emission
intensity in the obvious way. This image is designed "as a simplified imitation of the
brain’s metabolic activity" with different arcas representing the skull, grey matter,
tumours and so on. Note that a property of this picture is that the emission density
consists of areas of constant intensity with fairly large contrast between different areas.
Fig. 4.3 is, of course, a discredsed version of the ideal image (Fig. 2 of Vardi er al.,
1985), pixels overlapping area boundaries being regarded as having a weighted average
of values present, in (approximate) proportion to area of pixel covered. Note that we
actually aim to reconstruct this discretised emission density, and denote total emissions
in pixeis by 4(s), s=1,...,S. Also, differing pixel areas must be taken into account in
the s_moothing and plotting; the intensities we plot are @, = A(s)/a(s), where a(s) is
the area of pixel s.

Positron emissions are assumed to occur uniformly at random over homogeneous
regions, but at appropriately differing rates between areas of dissimilar material i.e.
they occur according to a nopnhomogeneous spatial Poisson point process with intensity
function the emission density. The unobserved pixel counts are m and k(s,t) is the
number of emissions occurring in pixel s which are detected in tube r. Vardi et al.
(1985) state that the Poisson process assumption "seems beyond challenge and requires
no justification” in the PET problem.

The discretised kemel function becomes -the probability that a uniformly orien-
tated line through y in pixel s intersects the two detectors defining the tube ¢, averaged
over all y in pixel s, for s=1,...,5, r=1,...,T. The geometrical problem of evaluating
the p’s exacty is non-trivial; we propose using a simple approximation. If the prob-
lem were the strictly two-dimensional one suggested by Fig. 4.2, the basic idea is to .
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D! if the centre of pixel s falls in tbe ¢,
p(s.2) = 4.1

0 otherwise.

We thus gloss over small variations in p’s due to the planar geometry, but note that
there is an important effect due to the third dimension which we shall discuss in Sec-
tion 4.1.4. The computational advantage of concentrating on the centres of pixels in
our disc discretisation is great. For D = 128 and D; = 256, we need only store the
locations of 8,192 nonzero p’s — compared with 27,378 reported for Kaufman'’s
(1987) setup — and save considerably on computer time by addressing only those
terms corresponding to nonzero p’s in the EM update (2.2).

In practice, real PET apparatus invoives numerous further important practical
aspects including, for example, time-of-flight considerations (non-coincident arrival at
detectors), attenuation problems ("soaking up" of X-ray photons) and scattering (non-
axial photons); see Vardi er al. (1985), Kearfott (1985) and Hoffman and Phelps
(1986). Some of these effects, such as time-of-flight and scattering, involve alterations
only to the p(s,?)’s, so our general methodology would carry over unchanged. Non-
linear effects like attenuation, where the p(s,?)’s depend on the unknown image,
would require more substantial modifications.

4.1.4 Accounting for the Third Dimension

Photon lines are emitted in directions distributed uniformly in 3-dimensional
space and the detectors have a finite depth, 4, say; this has not yet been taken into
account. Consider a tube of length I, say, where [ is large relative to d, and condition
on the emission being in the direction of that tube. Suppose the annihilation takes
place at a distance /) from the left hand detector at a height x and write I, =I-/; (take
x<id and [, </, without loss of generality); see the cross-sectional view of Fig. 4.4. It
is natural to assume that x is uniformly distributed on [0,3d]; this reflects an assump-
tion that d is small enough for there to be negligible change in intensity over that dis-
tance. The contribution to p(s,¢) due to this third dimension is what we consider here,
namely, the probability that a particular emission yields a photon pair that hits both
detectors.

Suppose that y is the angle that the photon line makes with the plane of the
detectors. Since [3>d, only small y’s can occur, so that ¥ = tan y is approximately
uniformly distributed on its range of admissible values. Evaluating this range is not
difficult. First, if /~'l;d<x<}d, any line hitting the right hand detector automatically
also hits the left hand one; the range of appropriate y's is thus approximately d/,.
Otherwisc, 0<x<!~!/,d and the range, which is governed by the angles allowed by the
bottom edges of both detectors, is approximately xI/(ll,). Averaging over the
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distribution of x yields an average range of y which corresponds to the required proba-
bility. A simple calculation shows that, to the degree of approximation used above,
this probability is d /1.

Now, this quantity does not depend on where in the tbe the annihilation takes
place, but only on'the length / = I(¢) of the tbe. Thus, p(s,s) is modified by a fac-
tor, inversely proportional to /(¢), depending only on ¢, and not 5. The effect on the
data is clear: a smaller proportion of emissions occurring towards the centre of the disc
will be detected than of those happening near the edge, with a consequent degradation
of reconstruction quality to be expected in the (important) central area. That this third
dimension effect remains important while an apparently similar effect in the pl2nar
case — imagine Fig. 4.4 as the view looking down on a tube in Fig. 4.2 — does not,
is due to short tubes in the plane also becoming thin tubes (d decreases with /), but
retaining their depth in the third dimension. '

The=real importance of the third dimension lies in the fact that the 3-dimensional
probiem does not tend, in the limit as d—0, to the 2-dimensional one. To see this,
note that any d>0 results, after proper normalisation, in an identical set of p(s,?)’s;
these include I(r), the 2-dimensional ones do not. Since the real PET problem is 3-
dimensional, our approximating to that case is much preferable to approximating the
planar situation only. Since the chahgc to p(s,t) depends only on ¢, the extra compu-
tational burden imposed by taking account of the third dimension is virtually nil.

_ 4.2 EM Reconstruction

We are now in a position to apply the EM algorithm for ML estimation to the
PET problem, exactly as described in Section 2. Shepp and Vardi (1982) were the
first to do so; Vardi er al. (1985) and Kaufman (1987) follow up this work (see also
Lange and Carson, 1984). The uniform initialisation / early termination version of EM
which is actually employed is widely regarded as being among the best PET recon-
struction procedures currently available; see, for example, Shepp ef al. (1984), Mintun
et al. (1985) and Vardi er al. (1985), the last named outlining several competing
reconstruction methods. Most commercial PET installations persist in using other
techniques (especially "convolution back projection”, see Shepp and Kruskal, 1978)
because of the computational advantage such approaches afford (Kaufman, 1987).

A dataset arising from the phantom of Fig. 4.3 was simulated; all reconstruction
attempts to be portrayed in succeeding figures are based on these data. In line with
many other studies, a total” number of emissions, N, of 10% was chosen (this is, how-
ever, rather fewer than the number employed by Vardi er al, 1985, and Kaufman,
1987). Data simulation was again performed by mimicking the physical process:
obtain points from the Poisson process with the intensity displayed in Fig. 4.3 by the
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obvious acceptance/rejection method, obtain randomly oriented lines through these
points by choosing uniformly distributed angles and finally perform a further
acceptance/rejection step with acceptance probabilities inversely proportional to the
lengths of these lines to take the third dimension into account.

A reconstruction of the phantom obtained by allowing the EM algorithm to run
for some considerable time — here, 200 iterations — is shown in Fig. 4.5. The result
is typical of the unacceptability of "ML reconstructions” in this context. The image
obtained is itself very noisy: putative flat areas are estimated to be extremely rough.
As well as the lack of aesthetic appeal, the effect of this is that only the very strongest
features — here, the large circle and ellipse, both with very different intensity from the
background — survive for inspection; this is clearly unsatisfactory. The speckled
nature of Fig. 4.5 reflects the roughness of the reconstructed surface in plan view;
neighbouring pixels are estimated to have widely differing intensities. It is important
to note that the EM algorithm has not yet converged and the roughness described here

ate analogue, this effect being mitigated hére by the smoothing due to the discretisa-
tion of the disc. The same grey scaling is used on all reconstructions. The great varia-
bility in Fig. 4.5 implies that in the darker areas, some estimated pixel intensites lie
above the highest grey level and have been redefined to be black; some of the speck-
led nature of the picture, especially on the largest circle, has thus been concealed.

Of course, in practice, application of the EM algorithm is not allowed to reach a
state like that of Fig. 4.5. Rather, the iterations are terminated early: Fig. 4.6 displays
the reconstruction obtained by stopping after just 24 EM iterations. Calling this
(erroneously) "the ML reconstruction” accounts for the good performance attributed to
the method: in Fig. 4.6, large "objects” are well reconstructed and roughness, com-
pared with Fig. 4.5, is considerably reduced. (Small scale features present in the phan-
tom are hinted at, if not reproduced convincingly.) Veklerov and Llacer (1987) propose
a data-dependent rule for selecting the. point at which early termination of the EM
algorithm should occur. The use of a constant initial configuration is important here;
it is a smoothing influence which persists through the early stages of the EM algo-
rithm. Roughly speaking, early iterations quickly make manifest approximate shapes
and intensities of objects, while the later iterations are responsible for roughening the
image. The uniform starting point is the ultimate in smooth images in the sense
appropriate to PET. So, rather than the common approach of smoothing a rough
image towards such a smooth one, the EM iterations are used to "roughen” away from
the ultrasmooth.

Different choices of initial estimate result in different EM reconstructions; a vivid
illustration of how properties of initial reconstruction can persist to appear in iterated
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reconstructions is given in Fig. 5 of Kaufman (1987). Extensive recent work on
accelerating convergence of the EM algorithm (Lewitt and Muehllehner, 1986, Kauf-
man, 1987, Lange, Bahn and Little, 1987) seems gratuitous since, as we have argued,
the ML optimisation is inappropriate to the problem at hand.

All our reconstructions incorporate the third dimension effect described in Section
4.1.4. These tum out to be slightly smoother than comparable reconstructions of the
purely two-dimensional version; the length bias has the effect of making the problem
less ill-posed. As anticipated in Section 4.1.4, there is a slight deterioration in quality
of reconstruction towards the centre of the image; perhaps it would be more realistic to
suppose the area of interest filled a smaller portion of the tomograph disc, whence
such an effect might become more important. Note also that we might expect the
incorporation of more physical considerations into the p(s,t)’s to result in less smooth
reconstructions than here, since most would have a smoothing effect on the kemnel and
a consequent worsening of the ill-posed nature of the problem.

4.3 Smoothed EM Reconstruction

4.3.1 Local Smoothing

We utilise perhaps the most natural (and common) approach to smoothing values
on a spatial grid: replace the value at each pixel by some function of that value and
those of its nearest neighbours. Examples of usefid smoothing functions follow in
Section 4.3.2. A little care needs to be taken over the definition of neighbours in our
circular discretisation scheme. For a rectangular discretisation, Besag (1986, p.262),
for example, identifies nearest ncighbours of a pixel in a natural way: first-order neigh-
bours are those pixels adjacent vertically and laterally to the one of interest, while a
second-order neighbourhood additionally includes diagonal adjacencies. The effect of
a finite window is to modify these definitions (in an obvious way) for boundary and
corner pixels. It is not difficult to translate these notions to the circular grid although,
because of the seaming, we need deal with 8 (rather than 3) different pixel types. First
and second order neighbours of pixels of each type are identified in Fig. 4.7 (using
D, =64 for clarity). These definitions retain the desirable property of symmetry of
neighbour pairs: if 5, is a neighbour of s,, 5, is a neighbour of s5;. Following Besag
(1986), we view the second order scheme as the most useful one (and use it
throughout). A further argument here for going beyond first-order neighbourhoods is
that alternate pixels on the outside of a seam have different types of adjacency on the
inner edge; this leads to an undesirable "castellation” effect on reconstructions using
first-order neighbours only.
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Unlike the basic EM algorithm, boundary and seam effects mean that EMS algo-
rithms do not automatically scale so that Y A()(s) = N, all i21. Operationally, we
s

rescale smoothed images to have this property; although this has no effect on succes-
sive reconstructions, it is useful in making successive values of the (log) likelihood
comparable.

4.3.2 Smoothed Reconstructions

In this section, we present some examples of applying versions of the smoothed
EM algorithm to reconstructing the phantom of Fig. 4.3. Because the phantom, as
well as images likely to occur in practice, is not everywhere smooth but contains
discontinuities, we have experimented with both simple linear smoothers and with
local non-linear ones. Smoothers that purport to preserve edges are necessarily non-
linear in the values at the pixel of interest and its neighbours; Scher er al. (1980) and
Chin and Yeh (1983) describe 'a number of methods that have been proposed in the
literature for use in cleaning up noisy images containing discontinuities. However, the
performance of non-linear smoothers within EMS has been disappointing. We report
reconstructions based on just two of these smoothing schemes out of the several we
have tried. In Fig. 4.8, we exhibit the result of using the EMS algorithm with local
median smoother i.e. replacing a pixel value by the median of it and its neighbours’
values. In Fig. 4.9, a slightly more sophisticated non-linear smoother — the best we
have used in this context — was deployed. This is the mean of the central pixel value
and of the two neighbouring values closest to the central one; in this way, we try to
average only over pixels on “the right side” of an edge (this is a special case of KAVE
of Chin and Yeh, 1983). Neither of these, nor any others that we have investigated,
yields a good reconstruction. As well as eradication of the smaller features of the
phantom, significant distortions are introduced as artefacts of the methods used. Both
Figs 4.8 and 4.9 are pictures produced after 200 EMS iterations. It is important to
note that neither of these non-linear methods converged.

Returning to linear local smoothers — and thus relaxing our concern for trying to
avoid blurring feature edges — we get better results. A simple scheme, which works
well, is this: take a weighted average of the formn weight 1 for the central value and
equal weights W1, say, for each neighbouring value, normalised appropriately (other
linear smoothing possibilities are in Russ and Russ, 1984). This is closely related to
the way we smoothed in the stereology context. It turns out that we need only a smalil
amount of smoothing (W large) for good effect. Reconstructions for the ongoing
example are given using W =200, 50 and 10 in Figs 4.10, 4.11 and 4.12, respectively.
The first of these reflects the effect of (slightly) undersmoothing: background rough-
ness remains too high, although objects are fairly clearly visible. The last is a little
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oversmoothed: better background but loss of resolution in object reconstruction. The
choice W=50 in Fig. 4.11 seems to be about as good a compromise as can be
obtained by this method. We have not considered automatic choice of smoothing
parameter, but are encouraged by the fact that "best” choosing W might not be critical:
reconstructions (not shown) using W between say 100 and 25 are not substantially dif-
ferent from that of Fig. 4.11. Note that in virtually all of our reconstructions a minor
effect due to the seam in our discretisation with radius one half that of the disc is
faintly visible. In particular, this artefact has had a slighdy detrimental effect on the
quality of reconstruction of the pair of small ellipses towards the bottcm of the phan-
tom which lie near to this seam.

Quantifying reconstruction quality in image analysis is not easy. We briefly report
L, discrepancies between phantom and reconstructions; this quantity is

B = ¥ a(s) [As) - Aw)|
s=1

where A and A are grey scale values corresponding to 4 and i respectively. Now,
B =6.191 for our W = SO reconstruction, although smaller values of B are achieved for
smoother pictures: B =5.728 for W =25 is the best achieved. Our visual preferences
are better reflected in other L, values, though: Fig. 4.5 yields the very large value
B =20.844, Fig. 4.9 is just preferable (B =9.825) to Fig. 4.8 (B=10.222) and is
much preferable to other non-linear EMS solutions, and the reconstruction of Fig. 4.6
after 24 EM iterations is quite good with B =6.910 (this is comparable with EMS
. reconstructions with W between 75 and 100). It is noticeable that B displays a prefer-
ence for oversmoothed images but is otherwise satisfactory. In any case, it is widely
recognised that this type of measure does not really give a good reflection of the
human observer’s sense of image fidelity especially when, as here, the true image con-
tains features with distinct edges. Indeed, the provision of image metrics that properly
reflect visual perception remains a difficult question: see Baddeley (1987), for exam-
ple.

Finally, the EMS algorithm using local linear smoothing has always converged in
a reasonable number of iterations. Indeed, using a convergence criterion essentially
corresponding to that in Section 3.2.3, the numbers of iterations required for conver-
gence of EMS with W =200, 50 and 10 were 62, 43 and 32, respectively. Moreover,
simulation experience suggests that the local linear EMS reconstruction is unique.

4.3.3 Other Smoothed EM Methods in Emissior; Tomography

To the best of our knowledge, this is the first ime our simple EMS algorithm has
been proposed. There are, however, some other suggestions for incorporating smooth-
ing intv the EM algorithm in PET and/or SPECT in the recent literature. We have
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already mentioned a penalised likelihood approach — an EM, algorithm — in Section
2. In the PET context, the M, step is essentally the same problem as that arising in
image processing problems which are approached by maximum a posteriori estimation
(see Geman and Geman, 1984, and Besag, 1986). Even when an appropriate penaity
function or prior distribution has been decided upon — locally dependent Markov ran-
dom fields form a class of priors capable of quantifying notions of local smoothness
(Besag, 1986) — the computational problem of locating the global maximum of the
penalized likelihood is immense and not yet satisfactorily solved (Greig er al., 1986).
Obtaining a local maximum at the M, stage is more reasonable. A successful method
for finding a "good” local maximum in image processing is Besag’s (1986) iterated
conditional modes (ICM) algorithm. Roughly speaking, ICM is not all that different
from our simple local smoothing: it performs a few iteratons of a sequential local
smooth (i.e. "current” pixel values include those already updated, not just the originals)
using a local smoother based on maximising a penalized marginal likelihood. We
would not be surprised to find that the ICM approach yields good reconstructions; we
wonder, though, if even its level of sophistication will ultimately prove to be
worthwhile. Indeed, Geman and MzClure (1985, 1987), considering the applicaton of
such methods in the context of SPECT, decided to fall short of a full implementation
of such an M, algorithm. Rather, they obtained a reconstruction by some other method
to act as initial estimate and then applied a single M,, step of the above sort. Perhaps a
better perspective on Geman and McClure’s approach is as the application of popular
image processing techniques to cleaning up reconstructions obtained in other ways.
Note too that Geman and McClure (1987) consider posterior mean reconstructions
(their penalised likelihoods are posterior distributions) as alternatives to posterior
modes. Less appealing to the current authors are other EM, approaches utlising
pixel-by-pixel priors designed to encourage smoothing towards prespecified, or
estimated, images. Examples are given by Hart and Liang (1987), Lange et al. (1987)
and Levitan and Herman (1987). Other regularisation procedures, based, we believe,
on inappropriate roughness penalty functicns, are considered by Girard (1987) and
Miller and Sayder (1987). '

A rather different approach to smoothed EM algorithms for PET is taken by
Snyder and Miller (1985) (also Miller, Snyder and Moore, 1986, and Snyder er al.,

1987). These authors force their emission density estimate to have kemel convolution
form i.e.

AGs) = fes.6(dz  s=1....,S,

for © a known kernel, and @ is estimated by ML — this is a kemnel convolution sieve
(Geman and Hwang, 1982). This is identical with replacing the point-spread function
by a kernel-smoothed version of it,
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p®(s.1) = ¥ 8(s,r)p(r.0),

say, and proceeding by the EM algorithm. As a last step, this ML solution is smoothed
once by application of ©. This approach, while certainly yielding smooth images,
requires the (spiky) ML solution to what is an even more ill-posed problem (caused by
the smoothing effect of ©) and so it retains and perhaps even exacerbates all the
numerical convergence problems of obtaining true ML reconstructions by the EM
method.

4.3.4 Closing Remarks on the PET Application

A first striking feature of the reconstructions shown in this paper is the similarity
between that obtained by the uniform start / early termination modification of basic
EM, in Fig. 4.6, and the "best" weighted local mean EMS reconstruction shown in Fig.
4.11. We have certainly shown that nothing need be lost in terms of reconstruction
quali;y by the introduction ,°£ our ¢ cxglici/tsms&d_xing_medurc and would argue that

the latter imagcaiﬂs indeed a slight improvement over the former. Moreover, the EMS
' formulation offers prospects of further improvement: other local smoothing schemes
can be fitted into the same framework and might work better, while the benefits of the
provision of an apparently uniquely convergent algorithm include scope for further
computational improvement such as accelerating that convergence.

5. SOME THEORETICAL BACKGROUND

The clear empirical success of the EMS algorithm immediately asks several
theoretical questions. It has been observed in practice that the EMS algorithm employ-
ing linear smoothers converges relatively quickly and that its limit point is apparently
unique. Obviously it would be of interest to prove these properties rigorously. Unfor-
tunately, we have not been able to do so, but in this section we provide a heuristic dis-
cussion that relates the EMS procedure to an EM,, approach where the likelihood is
penalised by a term that is quadratic in the vector of square roots of the intensities.
This relationship gives some insight into the good properties of EMS and it is our
hope that it will be a useful starting point for future theoretical work.

5.1 A Lemma

The first step in our development is a simple algebraic lemma.

Lemma. Suppose that W is a diagonal matrix of weights and that S is a matrix for
which §,; 20 for all r and s and Y S,, = 1 for all . Suppose that for some §> 90
3 .

[w lw,-1] <6
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for all (r,s) such that S,, # 0; here, the w's are the diagonal clements of W. Define a
matrix T by T = W-!SW. Then for any vector x

| (Tx~Sx),| < dsup|x,]. ;.1

Proof. |(Tx~8x), | = |T.S,,(w; lw,=1) x| SSsup|x, | TS, =6sup |x,|. O
s u s “

The implication of the lemma in the current context is as follows. Suppose that x is
indexed by our reconstruction bins and that S is a local smoothing operator so that
S,s =0 unless r and s are neighbouring bins. Suppose that W is an array of weights
that vary continuously over the space Y, that is, w, = w, whenever r and s are neigh-
bours; then & can be chosen to be small. The operator T corresponds to weighting an
intensity by the w weights, smoothing by the operator § and then unweighting. The
lemma therefore quantifies the intuitive notion that S and T will have approximately
equal effects.

52. A Relationship Berween Local Smoothing and Maximum Penalised Likelihood for
Poisson Random Variables

Write ¢ for the vector of ¢,’s where ¢, =A(s)/a(s) as in Section 4.1.3 and
define z, =p, for all s with £=(xy,..., 75). Also write ¥ as the diagonal matrix
with diagonal elements y, =q(s)a(s). Let S be a smoothing matrix all of whose
eigenvalues lie in (0,1] and define R = ¥4(S~! -D)¥i. Suppose that observations m(s)
of independent Poisson( @, y,) random variables are availabchand let [,(x) be the log
likelihood penalised by =* Rx i.e.

I,(x) = ¥,m(s)log(zy,) ~ T v, - & Rx.

To see that #7 Rx has the effect of being a roughness penalty, note that the eigen-
vectors corresponding to large eigenvalues of R will be those corresponding to small
eigenvalues of §, and so will consist, loosely speaking, of high frequency oscillations.
The following theorem demonstrates a connection between the penalised ML estimate
of x, and the estimate obtained by direct smoothing of the ML estimate of @ and by
taking square roots.

Define £ to be the maximiser of Ip(x) in {x,>0}. Set W=‘P5ﬁ”l, where
.11 = diag(#). The ML estimate of ¢ is ¥~'m. Define T = W-!SW as in Section 5.1
and let # = (#, ..., #5) where &, = (T¥~'m)} for each s.

Theorem. With the above definitions, # = #.
Proof. Write
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I, (%) = -& (¥ +R)x + 2T m(s)logx, + L m(s)og y.
s 2

Hence the Hessian matrix of b is -2(P+R+ diag{m(s)/x,z]), which is strictly nega-
tive definite in (%, >0}, and so # will be uniquely defined by VI,(#) = 0. This is true
if and only if

((¥ +R)#), = m(s) #;! for each s.

It is casy to sce that W+R="WiS ¥} and that, if @ is the vector of #2’s,
@ =WIW-12. Therefore, the vector with components 2, {(¥ + R)&), is equal to
(P + R)# = (W) (IS~ 1) viwg = ¥W-1S"1Wp = YT 1.
Thus, m="¥T ! so that =T¥"'m and therefore #, = (T¥"'m)} =7, foralls. O
Of course, the smoothing matrix T depends, through the weights w,, on £ and so
the expression of 5 as a smoothed version of ¥~'m is not immediately of practical
use. However, a heuristic argument based on the lemma relates the smoothed ML esti-
mate ¢* =S¥ !m to 6 as follows. Since the penalty &7 Rx can be expected to penal-
ise for roughness in =, the penalised ML estimates {#,} will vary continuously. Pro-
vided the y,’s also vary continuously, so will the weights (w;} and hence, by the
lemma, the effects of smoothing by the operators § and T will be almost identical
Thus p* =S‘{“1m=T‘P‘1m=$. Note that in the PET context, the y,’s do not vary
continuously across the seams in our discretisation of Y but this does not appear in

practice to have an important effect. In the stereology example, there is no such
discontinuity. . -

5.3 Smoothed EM and Penalised EM

Return now to the EM algorithm and consider the construction of an EM, algo-
rithm to maximise /(n|1) penalised by a term = Rx as above. Recall that, at each

iteration, in the notation of Section 2, ﬁ‘z(s):Zl?(s,t). If the Mp step is then approxi-
¢

mated by finding the smoothed ML estimate A*(s) = p,*a(s), where p* =S¥,
then the effect is precisely an iteration of the EMS algorithm using the smoothing
operator S. Thus, each. EMS iteration corresponds approximately to an iteration of the
EM,, -algorithm with the penalty on the square roots of the intensities; this is the point
we aimed to make.

This heuristic equivalence may account for the rapid convergence of the EMS
algorithm; see the remarks of Dempster er al. (1977) about the EM, algorithm. We
have been unable to prove that the penalised likelihood has a unique maximum but our

empirical experience suggests that this is so. Certainly it will be the case in general

that at any maximum of the penalised likelihood the Hessian matrix is positive definite




so the maximum will be strict.

6. SUGGESTIONS FOR FURTHER WORK

We have introduced a simple algorithm that is widely applicable to a large class
of problems involving indirect observations. Clearly, there is much scope to supple-
ment our fruitful empirical studies by further theoretical and practical work. In particu-
lar, the work of Section 5 might be carried further. Once this is done, it would then
be of interest to study the theoretical properties of the EMS solution, both for their
own sake and in order, hopefully, to give insight into the choice of smoothing parame-
ter. Alternative smoothing schemes are also of interest.

The whole area of statistical methods for indirect data is not enormously well
understood. One interesting question is that of quantifying the information loss
inherent in the indirectness of the data. Johnstone and Silverman (1988) have made
progress for the PET problem towards finding an equivalent "direct sample size", i.c.
the number of emissions whose exact position would have to be observed to give the
same accuracy of estimation as the given sample of indirect observations.
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FIGURE LEGENDS
Fig. 3.1. An EM reconstruction (——) of the truncated Weibull density (- — ).
Fig. 3.2. An EM reconstruction (——) of the truncated normal mixture density
(===
Fig. 3.3. An EMS reconstruction using J =5 (—) of the truncated normal mix-
ture density (= ~ —). The reconstruction is based on the same data as Fig. 3.2.

Fig. 3.4. Another EMS reconstruction using J =5 (——) of the truncated normal
mixture density (— — —). The reconstruction is based on a different dataset.

Fig. 3.5. An EMS reconstruction using /=9 (——) of the truncated Weibull den-
sity (= = —). The reconstruction is based on the same data as Fig. 3.1.

Fig. 3.6. The EMS reconstruction using J =5 (——) of the sphere radius intensity
for the mouse liver data.

Fig. 4.1. A planar section through an elliptical "body" within a circular detector
set; edges of individual detectors are marked. An emission, at %, yields a randomly
orientated line in 3-space. Two such possible lines are shown.

Fig. 4.2. Our discretisation of the disc.
Fig. 4.3. The phantom.

Fig. 4.4. A cross-section through a tube showing the distances defined in the text.
The annihilation spot is marked *. '

Fig. 4.5. Reconstruction after 200 EM iterations.
Fig. 4.6. Reconstruction after 24 EM iterations.

Fig. 4.7. Neighbours in the circular discretisation scheme: O = pixel of interest,
% = first order neighbour, x = second order neighbour. There are eight different pixel
types in all; two of these are illustrated on separate insets.

Fig. 4.8. EMS reconstruction using local median smoother.

Fig. 4.9. EMS reconstruction using 2AVE smoother.

Fig. +.10. EMS reconstruction using we;ghted local mean smoother with W = 200.
Fig. 4.11. EMS reconstruction using weighted local mean smoother with W = 50.

Fig. 4.12. EMS reconstruction using weighted local mean smoother with W = 10.
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An Orthogonal Series Density Estimation Approach to
Reconstructing Positron Emission Tomography Images

M.C. JONES & B.W. SILVERMAN, University of Bath

SUMMARY Positron emission tomography (PET) is an important medical imaging
technique. Statistically, the PET image reconstruction problem comprises estimating
the intensity function of a nonhomogeneous Poisson process from a set of indirectly
observed data (an integral transform is involved). In this paper, we investigate a new
reconstruction method consisting in the adaptation of orthogonal series density estima-
tion techniques to use with an idealised form of the PET problem. The method pro-
vides reasonable reconstructions quickly,; its computational speed is its major advan-
tage. It has further advantages (e.g. no pixellation required) and various disadvan-
tages (e.g. difficulties with object boundaries, non-negativity not guaranteed) which
are discussed. Its major disadvantage, however, is the difficulty associated with gen-
eralising the approach to cope with more realistic versions of the PET model.

1 Introduction

It is often desired to infer something about the internal structure of an object when to
look at that structure directly is impossible. Instead, we may be able to obtain meas-
urements external to the object which are, in some way, derived from the internal
structure of interest and from which we might hope to be able to estimate that struc-
ture. This scenario occurs frequently in medicine. Suppose, for concreteness, interest
centres on a patient’s brain and, especially, in the metabolic activity in a particular
slice through the brain. An idealised image illustrating the kind of pattern of activity
we might expect to obtain is shown in Fig. 1. Here, grey levels are used to represent
different levels of activity. How do we get at such a useful portrait of unobservable
features?

The particular technique for this kind of investigation with which we are con-
cerned in this paper is positron emission tomography (PET). In PET, radioactive
material is introduced into the area of interest — often tagged glucose in the brain —
with the idea that it distributes itself around in direct prdportion to the property (meta-
bolic activity) of interest. The radioactive tracer emits positrons, each of which in turn
creates (in conjunction with a nearby electron) a pair of X-ray photons which fly off in
opposite directions and which can be detected externally; the point of photon genera-
tion corresponding to a typical emission is marked on Fig. 1 by a circle, together with
two lines through the point representing two potential photon paths which in fact occur
at a uniformly distributed random angle. An array of detectors positioned around the
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patient — in Fig. 1, they form a division of the outer circle into D = 128 arcs of equal
length — registers coincident photon arrivals. Thus, our data are the counts amassed in
the T= D(D-1)/2=8128 "tubes" defined by all pairs of detectors. In typical PET
applications, the total emission count numbers from several hundreds of thousands
upwards. The present and potential usefulness of PET and other medical tomographic
techniques is considerable. Research interests in the many stages that make up a com-
plete PET system cover a wide variety of disciplines. There is a number of important
statistical questions concerned with PET of which just the most obvious one of best
reconstructing the internal image from the external observations is considered here. For
a general introduction to PET, see Phelps, Mazziota & Schelbert (1986); for more dis-
cussion of the idealised PET setup in which we work here, see Section 2.

PET therefore provides a challenging image analysis problem which differs from
many image analysis problems in two important ways. The first of these lies in the
indirect nature of the image observation process described above. Many other prob-
lems, such as those discussed in Besag (1986) for example, concern noisy direct obser-
vation, in the sense that what is observed in each pixel depends only on the true
scene’s value in that pixel, and not elsewhere, together with some modifying noise
process. Here, emissions from completely different areas of the brain contribute to the
same data values since all that each datum registration means is that an emission
occurred somewhere in the given tube. In fact, observation intensity and image inten-
sity functions are related by an integral transform given in Section 2. The second
difference between PET and many other superficially similar problems is that the
image of interest is the intensity function of a nonhomogeneous Poisson process —
emissions occur uniformly throughout areas of constant activity in Fig. 1 but with rates
differing between areas ‘in direct proportion to the respective activity levels — and
direct data, if available, would be a realisation of that Poisson process; this contrasts
with data which are values of some true regression-type function observed with error.

There are several popular techniques for nonparametric estimation of an intensity
function, or equivalently of a probability density function, available in the literature
(see Silverman, 1986) for the case of directly observed data. Here, we investigate the
application of one of these — orthogonal series intensity estimation — to the PET
problem conceming indirect observations. It turns out that the orthogonal series
approach extends easily and naturally to the indirect case, at least for one particular
idealisation of the PET reconstruction problem; details are given in Section 3.

The current work provides a practically oriented companion paper to the theoreti-
cal investigation of Johnstone & Silverman (1988). Johnstone & Silverman were con-
cerned with quantifying the ill-posedness of the PET problem. In particular, they cal-
culated theoretically the order of magnitude of the size of a sample of directly
observed positron emissions that would be required to be equivalent to a given sample




size of the indirectly observed data which is available in practice, in the sense of yield-
ing equally accurate image reconstructions. They conclude that their "results confirm
intuition that for the PET problem, the amount of information available is still substan-
tial, but it is by no means as great as if a sample of . . . direct observations were avail-
able". Johnstone & Silverman introduce the orthogonal series intensity estimation
method as a purely theoretical device to aid their investigation. They mention that it
"might be used as the basis for practical reconstructions”. Here, we follow up this
suggestion.

Various properties of the orthogonal series intensity estimation approach to PET
image reconstruction are investigated in later sections of the paper. In Section 5, the
method is applied to a simulated example. It is possible to understand how the orthog-
onal series smoothing works by displaying pictures of the "equivalent weight function”
which a weight function estimate based on direct observations would need to employ
to obtain the same answers; this is done in Section 6. In Section 7, a propbsal for the
automatic choice of the smoothing parameter associated with this method is made.

Broadly speaking, techniques for image reconstruction in PET fall into two
categories. On the one hand, the best quality estimates thus far available derive from
iterative algorithms which are costly in terms of computer time. One such class of
methods is based on the EM algorithm, as developed by Vardi, Shepp & Kaufman
(1985), for which much recent interest has centred on incorporating some kind of
smoothing — see Silverman er al. (1988) for our own contribution to this area and
further references. On the other hand, practical PET implementations tend to use dif-
ferent algorithms which are much quicker to compute but sacrifice something in terms
of image accuracy. A favourite example of this type is the "convolution backprojec-
tion" method described in, for example, Shepp & Kruskal (1978). We see the orthogo-
nal series intensity estimation approach as fitting more into the latter category although
the quality of the resulting reconstructions remains fairly good. A major disadvantage
of the proposed method, however, is the difficulty associated with generalising the
approach to cope with more realistic versions of the PET problem. Further discussion
of the pros and cons of the orthogonal series approach is given in the closing Section
9.

2 More on PET

The idealised PET setup that we have briefly described in Section 1 is the one dis-
cussed by Vardi er al. (1985) in a paper that provides an excellent introduction to the
topic for the statistician. In practice, there are a number of potentially important factors
— such as time-of-flight considerations, attenuation problems, scattering and so on —
which are ignored in this model; they serve to modify the integral transform linking
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points of emission and the data at hand and should, if possible, be incorporated in
practical situations. An effect due to the nonzero thickness of the detectors, first
included in the model by Silverman er al. (1988), is also omitted in this paper, but see
Section 8.

Our notation follows that of Johnstone & Silverman (1988, Section 2.2) and is
Yriefly reviewed here. We first consider an entirely continuous version of the PET
model: as well as the naturally continuous "brain space” (the unit disc), parametrised
by the usual polar coordinates (7,8), 0 <7< 1, 0 <4< 2x, suppose the "detector space”
consists not of the T tubes of reality, but is the space of all possible unordered pairs of
points on the unit circle. Parametrise detector space in a polar fashion too: elements of
this space are given by (s5,9), 0 Ss< 1, 0 S ¢ < 2x where s is the length of the perpen-
dicular from the origin to the detected line and ¢ is the orientation of that perpendicu-
lar (see Fig. 2.2 of Johnstone & Silverman, 1988). It is convenient to renormalise the
emission intensity to be a probability density function f(r,8), say, with respect to nor-
malised Lebesgue measure u, where du(r,0) =x~'rdrdd. Write g(s,p) = (Pf)(5,p)
for the probability density in detector space with respect to the transformed measure A
given by di(s,p)=2x"2(1-s?}dsdp. The mapping P is the well-known Radon
transform of the density f given by

V(1-5?)

(Pf)(s,p) = 1;(1—.:2)‘i I f(scosp—tsing, ssing+rcose) dr. ¢S]
~(1-52)

As is intuitively clear, the Radon transform represents the average value of f over the
line connecting the pair of points on the circle. See Johnstone & Silverman (1988) for
more .details of the above and Deans (1983) for a good introduction to the Radon
transform in general.

In reconstructing PET images in this paper, we maintain the continuous nature of
brain space but are forced to discretise detector space. The former continuity contrasts
with many other reconstruction methods (including those of Vardi er al., 1985, and
Silverman er al., 1988) which work with a discrete pixellation of the disc. The latter
discretisation of detector space is an irremovable constraint due to the physical setup.
We denote the corresponding discrete tubecounts by n,, t=1, ..., T where the order of
indexing tubes by ¢ is immaterial.

3 Appropriate Orthogonal Series Estimation

We wish to estimate the emission intensity f. If direct observations drawn from f were
available, the usual orthogonal series estimation paradigm is as foliows. Firstly, expand
f in terms of orthonormal functions {7, )} i.e. write

f(r.8) =Y f,n,(r.0).
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Secondly, estimate the coefficients {f,) by the average of 7, over the sample of
(r,6)’s; call these { f,}. Finally, introduce some smoothing either by a collection of
tapering weights or, as here, by cutting off the potentially infinite sum after some finite
number, K, of terms. Our estimate is then

7(r.6) = X fn,(r.0). Q)
vsK

See Section 2.7 of Silverman (1986) for an account of this approach to density estima-
tion and Section 7 of Izenman (1988) for more references. Since our f is a bivariate
function, v represents a double subscript.

We can equally well expand g as
8(s,0) =3 8,¥,(s5,9)

for appropriate functions {y,} and use a similar procedure to estimate g. Note that the
8,'s are practically calculable from our indirect data. Now, provided that the orthonor-
mal sets {n,} and {y, )} are such that there exists a set {b,} of positive real numbers
with

(Pn,)(s,p) = b,y,(5.0), 3)

we can write g, =b, f, so that

f(r.8) =3b;1g,n,(r.6).

The natural orthogonal series estimate of f based on indirect observations is therefore

F(r.0) = X b7'8,n,(r.0). @
vsk
The fact that a set of quantities with the above properties — a singular value
decomposition — exists for the Radon transform (see Deans, 1983, Section 7.6) is
what makes the orthogonal series intensity estimation approach applicable to our ideal-
ised PET model. In brain space, the appropriate orthonormal functions are

n,(r.8) = (m+ 1R Z5(r) e, (5)
We have written v as (/,m): m=0, 1,2, ... is what becomes truncated at K, while /
varies from ~m to m in steps of 2. The functions Z,f‘( r) are the Zernike polynomials of

degree m and order / which have a history of application in optics (Bom & Wolf,
1980). See Deans (1983, Section 7.6) for their properties. In detector space, we take

¥, (5,0) = Up(s)e® (6)

where U, (s) is a Chebyshev polynomial of the second kind (see Deans, 1983, Appen-
dix C). The singular values {b,]} are given very simply by
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b, = (m+1)7<. 0))

Of course, the orthonormal functions in (5) and (6) are real-valued. In cach, the quan-
tity of the form ¢ (8!} js simply a useful shorthand for coping with sine and cosine
terms; in appropriate combination, all imaginary terms disappear. More details on the
above development can be found in Sections 5 and 6 of Johnstone & Silverman
(1988).

The discrete nature of the tubecount data affects the estimates {g,} of {g,}.
Suppose the line parallel to the sides of tube ¢ but located at its centre has coordinates
(5,,6,). Then we use the natural sample average of y, based on the grouped data,
namely '

. r _
g = N1 X my, (5.0, ®)

t=1
the bar denoting complex conjugation. Here, N=3 n, is the total number of emis-
sions. Plugging (7), (8) and the definitions (5) and (6) into (4) yields a complete
description of f (for fixed X). Recursions involved in ca'culating both types of orthog-
onal polynomial help to keép the computational burden down.

4 Presentation of Figures

Figs 2 to 8 are all grey level images of PET image reconstructions and related quanti-
ties. Each uses 32 grey levels scaled in a rather arbitrary way, increases in darkness
representing increases in (estimates of) metabolic activity. Orthogonal series intensity
estimation results in (high order) polynomial surfaces defined at all points of the disc.
Representing such smooth functions is a task well suited to the application of a high
quality contouring package; in our figures, we have used the excellent CONICON3
programs of Sibson (1987). The grey level images result from suppressing drawing of
the contours themselves and filling in the areas between successive contours with
appropriate shades of grey. CONICONS3 requires value and gradient information on the
function to be contoured only at a regular grid of values — a 20 x 20 square grid usu-
ally sufficed here. Computation and presentation of the images given in this paper
were performed on a SUN 3/160 workstation, copies of the pictures being produced by
an Apple LaserWriter II printer.

§ A Simulated Example

We illustrate use of the orthogonal series intensity estimation algorithm on data simu-
lated from the image — the "phantom" — shown in Fig. 1. This phantom is a piece-
wise constant function made up of elliptical areas of constant intensity (representing
ventricles, tumours and so on) on a large background ellipse (the head). The key
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property of this idealisation which, we belicve, transfers to real images is the presence
of edges of features at which there may be a considerable jump in intensity; ideally,
we would like to estimate such edges well. The constancy property (within objects)
may prove less realistic than some kind of smooth variation, but this is less of an
issue. This phantom is essentially the same as that of Fig. 2 of Vardi et al. (1985) and
was alsc used in Silverman er gl (1988). Fig. ! has somcthing of a discretised look
about it, having been obtained by using CONICON3 on a fine 100 x 100 grid; this
comes about since we are applying CONICON3 to an entirely inappropriate piccewise
constant function! Nonetheless, Fig. 1 bears comparison with the discretised version of
the phantom given as Fig. 4.3 of Silverman er al. (1988), giving a good impression of
the features present in the image and serving as a kind of bound on how well the true
phantom could be reconstructed using the representation tools at hand. A totmal of
N =10° emissions — commensurate with real applications — was generated from this
intensity function using the acceptance/rejection method in the obvious way. The
corresponding tubecounts form the data for this experiment.

Figs 2 to 4 are three reconstructions obtained from these data; they correspond to
K=10, 36 and 50, respectively. The first (Fig. 2) is clearly oversmooth. It is
encouraging that even here large features present in the phantom are reproduced to
some extent but the total disappearance of the smailer objects gives cause for concem.
Figs 3 and 4 are progressively less smooth. By the time K =50 (Fig. 4) it can be
argued, given knowledge of the true image, that even the smaller features are indicated
fairly well but, of course, that (practically unobtainable) knowledge is required to dif-
ferentiate the small objects on the reconstruction that should be there from the others
such an undersmoothed reconstruction gives that should not On balance, the choice
K =36 (Fig. 3) secems to be about as good as we can get. Large features are well
represented; there can be rather less confidence, though, in the smaller structure. Of
course, the smooth polynomial nature of our reconstruction method is a drawback
when, as here, piecewise smooth areas with considerable discontinuites in value at
feature boundaries make up the true image. The reader is left to append his or her own
adjectives to the goodness or otherwise of Fig. 3 as an approximation to Fig. 1!

White areas in Figs 2 to 4 are below the zero contour. The presence of such
negativity in our reconstructions is a property of the method that may be felt to be
undesirable; we note, at least, that negativity occurs in these figures only outside the
head region where there are no emissions in reality. Towards the outside of brain
space, some increase in estimated intensity levels is an edge effect which should be
ignored.




6 Equivalent Weight Functions

Many density /intensity estimation methods can be written in the form of general
weight function estimators (e.g. Silverman, 1986, Section 2.9). In the usual case where
f is obtained from direct observations {(r;,§;)} as in (2), we can write

" N
f(r.6) = N-1Y w((r;,8).(r,8)) )

i=1
where the weight function w is given by

w((R,0),(r,8)) = ¥ 7,(R,0)n,(r,8). (10)
vsK

When such direct observatons are available from the density of interest, the weight
functon expresses how a particular observation is smoothed out in making its contri-
bution to the overall estmate and hence gives insight into the nature of the smoothing
process; see, for example, Silverrnan (1984) for another relevant context.

Since the PET observadon process is an indirect one, some modification of the
above discussion is necessary. An appropriate alternative definition of the weight func-
impulse response function".

"

ton, equivalent in the case of direct sampling, is as an
That is, suppose that the true image consisted of a point mass at (R,0) and that N
indirect observations from this image were taken. Then, ignoring the tubecount discre-
_auon and with the degree of smoothing held fixed, it is easily shown that f(r,6)
based on these data approaches w in (10) as N = es. Thus, w remains the appropnate
weight function to study in the case of indirectly observed data too. As w and an alter-
native version of w which properly takes the data discretisation into account are virtu-
ally indistinguishable, we have not incorporated the data discretisation modification
here.

To make more of the above we present some pictorial illustratons. Fig. 5 shows
w for R=0 and © =0. Again, grey scale images are used in an obvious way (although
the overall scaling of the pictures in this section differs from that in Section 5). White
areas again define regions of negativity. The main features of Fig. 5 are the spherical
symmetry of the wéight functon and its concentration about the point (0,0). As in the
familiar kernel estimation approach, w has a mode at the point of interest and falls
smoothly away, resulting in an averaging over neighbouring values whose influence
becomes less as their distance from the centre increases. Beyond this central area, w is
small but not always positive; rather, there is a smooth fluctuation about zero, resulting
in a series of low positive peaks and shallow negative troughs. In Fig. 5, we have
taken K = 10. Larger values of K smooth less by narrowing the scope of the main part
of the weight function and thus averaging significantly over fewer neighbouring points.

The choice ® =0 in Fig. 5 is quite general; w is rotation equivariant so other ©’s
result simply in rotations of the © =0 picture. Differeat R’s are worthy of further
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consideration, though: in Fig. 6, we take R=0.5 and in Fig. 7, R=0.9. The general
pattern of a peak at the point of interest, a smooth falling away of w in a neighbour-
hood of the point and the small positive/ negative fluctuations in the tails persist. The
weight function is, of course, no longer essentially spherically symmetric but rather is
distorted somewhat in a way consistent with fitting w appropriately into the disc. What
is important about Figs > to 7 is that the amount of smoothing (essentially the extent
and shape of the area in which w is significantly nonzero) does not differ gready at
different points in brain space. Varying degrees of smoothing in response to properties
of f is an option (not considered here) that may well be desirable; varying degrees of
smoothing purely as a geometric function is not.

7 Automatic Choice of Smoothing Parameter

We saw in Section 5 how the parameter K controls the level of smoothing applied to
the data. Subjective choice of smoothing parameter, as there, is sufficient in many
applications of smoothing techniques but, in PET imaging, a fully automatic procedure,
and thus an automatic method for choosing K appropriately, might well be thought
desirable. In this section, we illustrate how a rather natural approach to choosing the
smoothing parameter in orthogonal series density cstimation in general adapts to the
PET case.

Suppose we consider the mean integrated squared error (MISE) to be an appropri-
ate measure of discrepancy between f and f The following development is entirely
analogous to the Fourier series density estimation case worked out in Hart (1985) and
references therein. First note that

[[1feey-fro|2du(r.0) = T 67218, -8,1% + T b7, | %

vsK v>K
Now ignore the tube discretisation for the moment (i.e. define g, like fv in (2) rather
than by using (8)), so that E(§,)=g, and Var(§,)=N"l0? where o2=
Var(y,(S,®)). Taking expectations in the above expression, we get

MISE = ¥ b;2(N"'o? - g, 1%) + [[1£(r.0)]2du(r.6). (11)
vsK

The value of K that minimises this MISE is a candidate for being a good choice of X
for the PET problem. Of course, we do not know MISE or its optimal K. Rather, we
drop the second term in (11) from further consideration because it is independent of K
and estimate the first term, /, say, as best we can; choosing K to minimise this esti-
mate (/) yields a practical procedure which, it is hoped, comes close to using the truly
optimal value of K. It is not difficult to show that

F=3b7AN-11(28, - (N+1)18,12) (12)
vsK
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is an unbiased estimate of /, so it is this formula that we minimise. In (12), §, is the
sample average of the |, |%’s. In practice, we are stuck with the discretisation of
detector space, so we use

T
§, = N~! Zl n | Vv(srvﬁ) | 2
t=
and §, as in (8) in /.
Since X is an integer, it is straightforward to minimise (12) by evaluating it over
a range of values of K; (D ~1) is an upper bound to this range due to an aliasing
effect although the optimal K is most likely to be much less than this anyway. Doing
this for the simulated example yields K = 36_and the corresponding figure is Fig. 3.
This is the image we preferred in Section 5 on subjective grounds. Of course, on the
basis of this one example only we make no great claims for the supremacy of our
automatic procedure. For one thing, there is always scope for wayward choices due to
errors in estimating the MISE-optimal K. More importantly, the propriety or otherwise
of MISE as risk function is in question. It is widely recognised that this type of meas-
ure does not give a good reflection of the human observer’s sense of image fidelity
especially when, as here, the true image contains features with distinct edges. The pro-
vision of image metrics that properly reflect visual perception remains a difficult ques-
tion; see Baddeley (1987) for some ideas. We persevered with the MISE development
above largely on grounds of tractability but are encouraged by the results: it is to be
hoped that alternative image metrics would also be open to a similar kind of approach.

Replacing the simple cutoff K in (4) by a sequence of weights {w,} remains an
alternative option but is one with similar problems of smoothing parameter choice.
Johnstone & Silverman (1988, Section 7) discuss optimal weight séquences for MISE;
these are, as is to be expected, not immediately practicable because they depend on the
true f. Otherwise, we might experiment with ad hoc weight sequences; the formulae in
Wahba (1981) become one possibility. These have not been pursued here.

8 The Third Dimension Effect

Photon lines are in reality distributed uniformly in 3-dimensional space, not just in the
plane, and detectors have a finite depth, d. This effect of the third dimension is not
incorporated into the reconstruction’ scheme above although it is important because it
persists even when d — 0 i.e. our 2-dimensional model differs from the limit of the 3-
dimensional one. It turns out that, to a good approximation, the third dimension effect
results in a weighted Radon transform, the weight factor being inversely proportional
to the length of the detector tube (or, at least, its continuous analogue); see Section
4.1.4 of Silverman er al. (1988) and Section 10.2 of Johnstone & Silverman (1988) for
details.
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We have not yet managed to modify the orthogonal series estimation approach to
cope with this. Rather, here we demonstrate the considerable effect that failure to do
so has on quality of image reconstruction. We can easily simulate data from the phan-
tom of Fig. 1 taking the third dimension into account by adding a further
acceptance /rejection step to deal with the inverse length bias; in fact, the resuiting
dataset is precisely that used by Silverman et al. (1988) in their simulation example.
Applying the current (2-dimensional) reconstruction algorithm (here with K'=36) to
these (3-dimensional) data gives Fig. 8; compare this with Fig. 3 in particular. Th=
third dimension cifect on the data is clear: a smaller proportion of emissions occurring
towards the centre of the brain space will be detected than of those occurring nearer to
the edge. The consequences for the 2-dimensional reconstruction are equally clear:
greater intensities are attributed to outer regions than should be the case, while central
areas suffer the reverse mistake.

9 Discussion

That the orthogonal series intensity estimation approach to PET image reconstruction is
quick compared with iterative procedures is borne out by the approximately 30-fold
improvement in computer time we have observed in comparison with the best EMS
procedure of Silverman er al. (1988). That it also suffers in comparison in terms of
important image quality criteria is also evident in at least three major ways:

(D The smoothness of images made up of polynomials is not consistent with the
presence of edges which, we argued in Section §, are most likely to be an impor-
tant feature of the real images we set out to reconstruct.

(II) There cannot be areas of the brain emitting négative numbers of positrons! EM
(Vardi et al., 1985) and EMS (Silverman er al., 1988) algorithms naturally result
in non-negative reconstructions; as we have seen, the orthogonal series approach
does not.

(OI) The Zernike/Chebyshev polynomial based approach is appropriate only to direct
and indirect observaton spaces being linked by the basic Radon transform. Early
in Section 2 we noted the many modifications to this transform that are needed to
properly model the practical situation. The major obstacle to use of the orthogo-
nal series approach in more realistic circumstances is the need to obtain the
singular value decomposition associated with the correct integral transform. Note
that for EM-based approaches, it is only necessary (for many modifications) to
identify the right ransform and to discretise it to get the p(b,d)’s of Vardi et al.
(1985).

The orthogonal series approach has further advantages as well as disadvantages.
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(i) It is saightforward to understand in the sense that it is a fairly direct application
of a well-known technique.

(ii) That there is no need to discretise brain space to facilitate reconstruction is partic-
ularly nice; the truly continuous nature of orthogonal series reconstruction is, con-

t ceptually, most appealing. ‘
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FIGURE LEGENDS

Fig. 1. An idealised PET image within a circular array of detectors. Two possible
photon lines arising from an emission at O are superimposed.

Fig. 2. Reconstruction with K = 10. .

Fig. 3. Reconstruction with K = 36.

Fig. 4. Reconstruction with K = 50.

Fig. 5. An equivalent weight function corresponding to R = 0. |
Fig. 6. An equivalent weight function corresponding to R =0.5.
Fig. 7. An equivalent weight function corresponding to R =0.9.

Fig. 8. Reconstruction (K =36) arising from data incorporating the third dimen-
sion effect.
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Appendix 14
Aggregation and refinement in binary image restoration.
by

M. Jubb and C. Jennison
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1. Introduction

Recent developments in statistical image restoration use a Bayesian approach.
One observes a degraded version of a true scene after the addition of noise and,
possibly, blurring. If the degradation process and noise distribution are known, the
likelihood of the record can be combined with a prior probability model to produce a
posterior distribution for the true scene. A common approach is then to seek the
maximum a posteriori (MAP) estimate of the scene and present this as the restored
image.

For computational purposes it is extremely convenient to work with Markov
random field (MRF) models. Under a MRF model the scene is divided into pixels,
each of which can take a single colour or grey level, a neighbourhood structure for the
pixels is specified and the key property of the model is that the distribution of the
colouring of any pixel is conditionally independent of all other pixels, given the
colouring of its neighbours.

There are two main approaches to searching for the MAP estimate. Geman &
Geman (1984) proposed the method of simulated annealing. They have shown this to
be a versatile and effective method although the amount of computation involved is
often high. Besag (1986) suggested a computationally simpler method which he refers
to as the method of iterated condidonal modes (ICM). This method will normally
converge to a local rather than global maximum of the a posteriori likelihood;
howev~.r, convergence is rapid and, given the approximate nature of tr:¢ MRF model,
failure to find the global maximum may not be a serious drawback.

Jennison (1986) and Jennison & Jubb (1987) have shown that the same form of
MRF model! can be used to obtain restorations of an image with detail at a finer level
than the pixel grid on which records are observed. In their original examples the noise
level was very low. The work reported in this paper grew out of an investigation into
the use of "refinement” methods in the presence of greater noise: the main problem in
this case is to find a good starting point for the refinement algorithm. In some of our
exploratory examples we discovered that the ICM method itself experienced serious
difficulties at very high noise levels. One solution to this problem is to increase the
signal to nnice ratio by aggregating the records of, say, each 2 by 2 block of pixels
into a single record: satisfactory results were obtained by applying ICM to the
aggregated signal and then using the resulting restoration as the starting point for ICM
on the original pixel grid. A natural extension of this idea is a "cascade” algorithm,
similar to that of Gidas (1989), which produces restorations on successively finer pixel
grids, starting with a single large pixel and ending with the original grid. We have
found that this approach provides a simple and efficient way of adapting the ICM
method to very noisy data. It also solves the refinement problem, since the end
product of this algorithm, or even a restoration based on aggregated dara, will provide
a good starting point for the refinement process.

Our intention in this paper it to follow the ICM approach as much as possible.
There are severai places where simulated annealing might be incorporated but it would
require substantially more computing. and there is no guarantee that it would provide
better results. The main advantage of simulated annealing is that it allows one to
escape from a local maximum of the posterior likelihood by a process of trial and

“error, however, use of the cascade algorithm to choose a good starting point for the

deterministic I[CM algorithm may be just as effective. We do introduce a version of
simulated annealing to implement the refinement method of Secton 5. Although this
provides a very convenient way of exploring a larger set of restorations, its impact on




the final restored image for our example is slight.

Some comment on the role of the prior model for the true scene is called for.
Gidas (1989) goes to great lengths to ensure that, in his cascade algorithm, the models
at different pixel sizes are mutually consistent. We are not committed to a single
model and will be happy 2s long as the final restoration is a good one. It should also
be remembered that all that we require of the end product of one stage of the cascade
algorithm is that it should provide a good starting point for the next. We do not
assume that we have a global MAP estimate at any stage, nor do we try to make use
of such a property.

We shall use a single illustrative example throughout the paper. In the original
image the boundaries of objects are smooth in parts-but irregular in other places and
certain features are extremely difficult to restore given the level of noise in the data.
Thus, the example shows both the power of the proposed method and its limitations.

2. Model and notation

We first consider a rectangular region partitioned into pixels labelled 1,2,...,n.
Each pixel is coloured black or white and the colour of pixel i is denoted by x; which
takes the value O for white and 1 for black. The x;” are unobserved. It is assumed that
the conditional density function f(y,}x") is known and for the remainder of this paper
we shall assume that the records y;.are independently distributed as Gaussian with
mean x;” and variance 6°. The set of records is denoted by y = {y;; i=1,...,n}. A
colouring of pixel ¢ (not necessarily the true colouring, x;”) is denoted by x; and a
specific colouring of the whole region is denoted by x = (x;; i=1,...,n}.

In the MRF model for the true scene we shall use a neighbourhood system in
which pixels are considered to be first order neighbours if they are horizontally or
vertically adjacent to each other and segond order neighbours if they are diagonally
adjacent. In our model, the prior dist-ibution for the true scene, p(x), is

p(x) o< exp{=(B{Z,;(x)+B1Z,(x0)}], QD

where Z,(x) is the number of discrepant first order pairs in the scene x, i.e. the
number of pairs of first order neighbours which are of opposite colour, Z,(x) is the
number of discrepant second order pairs and B, and B, are fixed positive constants.

The MAP estimate of the true scene is the value of x which maximises P(x|y),
the conditional probability of x given the record y. By Bayes’ theorem

P(xly) = [(ylx)p(x), (2.2)

where [(y|x) is the conditional likelihood of the observed record y, given the true
colouring, x, and p(x) is the prior probability of x. Thus, the maximisation of P(x|y)
corresponds o the minimisation of

1 2 » '
—_ sy a2 -
ST S Bzi0+Bz:0), 2.3)
over values of x = {x;;i=1,...,n}.

Besag's (1986) method of iterated conditional modes updates each pixel in tumn,
choosing for it the most likely colour based on its record and the current colouring of
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its neighbours, i.e., minimising (2.3) with respect to x; with all the other pixel
colourings fixed. The expression in (2.3) must decrease or remain constant at each
updating but convergence will usually be to a local minimum. We shall see later in
this paper that the choice of the initial colouring can have a great influence on the
accuracy of the final restoration. Throughout this paper, when ICM is applied, a
second order neighbourhood system will be used with B,=[,/¥2; this ratic of B, to B,
minimises the rotational variance of the second term of (2.3) with respect to the
positioning of the pixel grid on a given scene (see Brown, Jennison and Silverman,
1987).

In the above model for the true scene it is assumed that each pixel is coloured
wholly black or white. This is at best an approximation: more generally, one might
expect pixels on the boundary of an object to contain areas of each colour, in which
case the record y; will be distributed as Gaussian with variance 62 and mean equal to
the proportion of pixel ¢ coloured black. Although we shall consider problems in which
there is a general true scene, we start by considering restorations based on a discrete
MRF model in which each pixel has a single colour. The refinement method described
in Section 5 does, however, allow boundary pixels to be coloured partly black and
partly white.

3. An example

Figure 1. The true scene.

An example of a binary scene containing two separate objects is shown in Figure
L. A 256 by 256 pixel grid was superimposed on this scene and the proportion, p;, of
black in pixel i was calculated for each pixel. The record y, was obtained by adding
Gaussian noise with variance 4 to this proportion, p; . Figure 2 shows the closest
mean classifier for this record, in which a pixel is coloured black if its record is
greater than 0.5 and white otherwise. One would not nor.nally hope to recover an
image which has been exposed to such a large amount of noise and Figure 3 shows the
rather unsatistactory restoration obtained by applying ICM with B, =4. The value B, =4
is unusually high but we found this to give the best results. (Note that even if B; 2o
certain onfigurations of pixels remain unsmoothed.)

Th2 major problem in our example is the low signal to noise ratio. This ratio
may be improved by aggregating the record, i.e.. by replacing sets of 2 by 2 pixels bv
a single large pixel with record equal to the average of the original four. This also




Figure 3.

Figure 3. Figure 3.

Fiqurc 6. Figure
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corresponds to viewing the original image on a coarser grid. The variance of the new
record is one quarter that of the original but the range of the p;’s is stll [0,1]; thus
there is a substantial increase in the signal to noise ratio. The restoration shown in
Figure 4 was obtained by applying ICM to the aggregated record; the prior model for
the true scene had the same form as (1.1) but was applied to larger pixels, the value
B, =4 was also used here as it was found to give the best results. The clear superiority
of this restoration to that shown in Figure 3 demonstrates the advantage of working
with the aggregated record. One explanation of the success of this restoration process
is that it allows the ICM algorithm to look further afield when gathering neighbour
information: ICM on the original pixel grid can easily be trapped in a local maximum
of the a posteriori likelihood when only one pixel is allowed to change at a time.

Repeating the aggregation process gives the restorations shown in Figures 5 and
6, which are the restorations at two and three levels of aggregation respectively. These
restorations were obtained using B;=1, a more typical value, which we have found
gives good results in cases where the signal to noise ratio is moderate. Note that the
computational time and storage requirements for the processing of a 32 by 32 image
are approximately - times those needed to process a 256 by 256 image.

So far, we have followed Besag’s method and used the closest mean classifier as
our inital colouring for the 256 by 256 case and this is partly responsibie for the poor
quality of the restoration in Figure 3. A better initial colouring might be the final
restoration obtained from an aggregated record. Figure 7 shows the result of using
Figure 5 as the initial colouring for I[CM on the 256 by 256 grid with 3, =4; a similar
result is obtained with f,=1. The superiority of this restoration to that of Figure 3
demonstrates the influence of the initial colouring on the resulting image.

The method of simulated annealing is less dependent on the inital colouring,
since it can progress from one local minimum of (2.3) to another whilst passing
through higher intermediate values. Thus. simulated annealing is able to search at least
a little further afield .than the myopic ICM strategy. An advantage of using an
aggregation procedure is that it allows the ICM approach to use more distant

neighbour information whilst maintaining its computational speed.

4. The Cascade Algorithm

In the previous section we introduced the idea of using the restoration obtained
from an aggregated record as the initial colouring for restoration on a finer scale. We
now extend this idea to define a “"cascade” algorithm in which restorations obtained
from 2™ by 2™ grids are used as the initial celourings for restorations on 2™*! by
27+l grids. A single pixel restoration is obtained by aggregating the record until it is
one pixel in size: this is then used as the initial colouring for the ICM method on the 2
by 2 gnid. This restoration is in turn used as the initial colouring for ICM on the 4 by
4 grid and we continue in this way, obtaining restorations right up to the level of the
original record. The last six in the series of restorations for our example are shown in
Figures 8-13: the value ;=1 was used at each level, though it is interesting to note
that using higher values at the 128 and 256 levels made virtually no difference 1o the
image obtained.

The method of Gidas (1989) is very similar to the procedure we have just
described. However, Gidas uses a single MRF model defined on the finest pixel grid
and employs the "renormalization group” approach to compute the models implied for
coarser grids. Both the complexity of the .«nodels at the aggregated levels and the use
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of simulated annealing at each stage makes this a computationally demanding method.
We have tried to keep computation to a minimum at the expense of a less rigorous
treatment of the prior model: given the approximate nature of this model, we would
argue that this is not unreasonable.

One might at least ory to develop theoretical arguments to produce a "correct”
sequence of values of B, for use ar different stages of the cascade algorithm. Brown,
Jennison and Silverman (1987) interpret the second term of (2.3) as a penalty and
suggest that it should be chosen to be approximately independent of the pixel grid
superimposed. They suggest that this penalty should approximate a constant multiple
of the total boundary length in the image. In our applicaton this would imply that the
parameter 3, be halved as the pixel sizes are quartered but we have not found this to
be very successful in practice. Using the same value of B, at each stage produced
substantially better results.

When processing the larger images we avoid unneccssary computations by storing
the coordinates of pixels whose colourings have changed in the current iteraton. If the
number of these is small, only pixels whose neighbours have changed colour in the
last iteration are considered for updating in the next iteration. For each of the images
shown in Figures 8-13 one complete iteration plus some minor changes was all that
was required. Summing a geometric series, we see that the total computation required
is approximately equivalent to 15 iterations of ICM on the finest pixel grid.

We have seen that the restorations obtained on the finer grids have been
insensitive. to the choice of ;. This is partly attributable to the high noise level
(updating is essentially by the "majority vote rule” at quite low values of ;) but also
suggests that, for a given image, restoration at too fine a pixel level is unnecessary,
adding only computation and superfluous detail tc what is already a satisfactory
restoration. We are able to make a direct comparison of restorations obtained at
different levels of aggregation by superimposing the finer grid on the coarser image
and calculating penalties for both, based on the finer record and the MRF model at that
level. The coarser image is disadvantaged, since it was chosen when searching for the
minimum of a different penalty. We measure the benefit of restoring at the finer level
by the percentage decrease in the penalty. The values are tabulated below.

Grid size Grid size  percentage

of coarse of fine reduction

restoration  restoration in penalty
2x2 i1x 4 68.1
Ix 4 ¥ x 8 75.8
8 x 8 16 x 16 49.6
16 x 16 32 x 32 21.5
32 x 32 64 x 64 5.2
64 x 64 128 x 128 1.6
128 x 128 256 x 256 0.6

Analysis of these values is purely subjective but appears to suggest that the 64 by 64
level is satisfactory. Inspection of Figures 8-13 also leads to the same conclusions.




5. Subpixel refinement.

So far the restoration techniques we have used have coloured each pixel wholly
one colour, even though pixels on the edges of objects in the true scene may be partly
black and partly white. We now consider techniques which allow both colours to
appear in a single pixel. Jennison (1986) used a modification of the ICM method to
obtain a restoration in which each pixel was divided into 4 subpixel quarters and a
separate colour allocated to each subpixel. His method used the ICM restoration at full
pixel size as a starting point for restoration at the subpixel level. The success of this
technique prompted Jennison and Jubb (1987) to consider the further refinement of
pixels.

Since the number of different colourings of a pixel grows exponentially with the
number of subpixels, the extension of Jennison’s method to a finer subdivision of each
pixel is computationally prohibitive. However, the limit of this process, in which an
arbitrary colouring of each pixel is allowed, can be made tractable. Rather than
specify a MRF model for the true scene we interpret the minimisation of (2.3) as a
form of penalised maximum likelihood. The second term of (2.3) is, approximately, a
multiple of the total boundary length in the image, x. Thus, an analogous penalty for a
general restoration, x, is .

L

— 3 (i=pi(x)* + BL(X), (5.1)
20°;

™Ma

1

]

where p;(x) denotes the proportion of black in pixel i, L(x) is the total edge length in
scene x and B is a fixed constant. For computational simplicity we restrict attention to
restorations in which pixels are either of a single colour or are separated into areas of
different colour by a single straight line with the line segments defining such areas in
adjacent pixels meeting at a point.

~ A black and white image can be regarded as a series of line segments separating
the two colours. Jennison and Jubb (1987) use the restoration obtained from Jennison’s
quarter pixel method is used an initial representation for the liné segments. The
updating process treats pixels in pairs, selecting the best place for two edges to meet,
given the current restoration of neighbouring pixels. We repeat the details for
<completeness.

i . . <

A . I3 ’
., . .

Figure 14. Updating the position of edges in pixels { and J.
As an example, consider the configuration at pixels i and j shown in Figure 14.
The distances a and b are determined by the current colouring of neighbouring pixels
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and treated as constant for the moment. The distance W is chosen to minimise the
contribution from pixels i and j to the total penalty (5.1), i.e.

g(W) = ‘2—1—‘ > Ok = puw)? + Bleww + ew), (5.2)
k=i,j .

where e,y is the length of edge in pixel & when the join is at W and p,y is the
proportion of black in pixel k when the join is at W.

For the case shown in Figure 14, this penalty is

810W) = = ((=a=4(W=a)* +0=b=(W=5))?)

+ B(V1+(W=a)2 +V1+(W=b)2}.

This can not be minimised directly but the form of

dg,(W) 1 . (W=a) {(W=b)
= 2W+a=2y.+b=2y.) + —— s ———ee
aw P 7P 1+(W=a)* - VI+(W-b)?

suggests an iterative approach. Given an approximate cuiuiion W _, we solve

1 (We-a) (W,-9)
‘_2'(2‘V:+a“2y‘+b_2y/) + B + = 0
4o VI+(W,_,-a)}  V1+(W,_;-b)?

to obtain
b
10%B 4 + + (2y;—a+2y;-b)
» [\Ju(ws_l—a‘)l \/1+(ws_1—b)2] !
s =
2+40%p 1 + 1
VI+(W,_=a)?  \1+(W,_,-b)?

Starting from any sensible initial value, W,, accuracy to 3 decimal places was
achieved after at most four iterations. In practice we take W, to be the value of W
prior to this update.

Different forms of (5.2) are possible depending on which neighbours of pixels i
and ;j contain both colours. There are only four distinct cases that may arise and these
are shown in Figure 15.

We have shown the method of solution for case (i); cases (ii) - (iv) are solved in
a similar way. All other cases can be reduced to one of the above by means of
exchanging and/or inverting the pixels and their colours. The edge pixels are updated
in turn, following an edge around, completing circuits of the edge until convergence.
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Fig. 15. Possible configurations of edges in two neighbouring pixels.

The complete restoration algorithm

We can now combine both aggregation and refinement into a three stage
algorithm:

Stage 1: Apply the cascade algorithm using ICM on the
aggregated records -up to a suitable point. The record is
now fixed at this level and no further use will be made of
the original record. (If the record is still aggregated at
this level substantial savings in computanon will result.)
avoiding unnecessary computation.

Stage 2: [terate Jennison's quarter pixel refinement to convergence.
This is very quick and supplies a good starting point for
the line fitting process.

Stage 3: Apply the line fitting algorithm to convergence.

A development in the line fitting algorithm

In the line fitting algerithm described by Jennison and Jubb (1987) the route that
the lines take through pixel edges is determined once and for all by the restoration
cbuaincd at the quoster pive] level
We have now extended the algorithm to allow changes in this route. Each time the
point at which the edge crosses a pixel boundary is updated an alternative route is
compared. A number of cases have to be weated separately; three qualitatively
different configurations are shown in Figure 16.




Fig. 16. Examples of configurations at whici alternative routes are considered.

The contribution to the total penalty from all four pixels is calculated for each of the
two routes with line edges chosen optimally for that route. In the basic method, the
route which has smallest penalty is then chosen. : .

Figure 17. Figure 18.

Figures 17 and 18 show the restorations obtained from applying the line fitting
method to the aggregated record in the example. In Figure 17 the grid size is 32 by
32 and in Figure 18 it is 64 by 64. In the previous section we suggested that a grid
size of 64 by 64 would be sufficient and the restoration shown in Figure 18 is indeed
satisfactory. In both cases we used B;=1 at the ICM and quarter pixel levels of
restoration and =4 for the line fitting.

The updating process in the above line fitting procedure has the general
characteristics of an ICM method: the penalty (5.1) is minimised with respect to one
component of the boundary whilst everything else is held fixed. This method will
generally vield a local minimum of (5.1) and it is possible that the final restoration
could be improved further by making a number of route changes simultaneously. For
example, the penalty (5.1) might be reduced by moving a long vertical edge one pixel
to the left whereas it would increase initially if only one route change were made at a
time.

To allow further exploration of alternative routes we have implemented a form of
simulated annealing. This method retains the property that for a given route the point
on a pixel edge at which two line segments meet is chosen optimally. However, when




m T >
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comparing the minimum penalties for different routes we allow the route with the
larger penalty to be chosen with non-zero probability. Suppose two routes, A and B,
have minimum penalties pen, and penp, then, when the anneaiing process is at
temperature T we select route A and its optimal edges with probability

e(-pem/f)

o (mPemiT)  (~penalT)
otherwise we choose route B. Of course, only the contribution to the total penalty
from the four pixels concerned need actually be calculated.

By restricting the random choice to the route alone, we ensure that, effecdvely,
the annealing process is applied to a fairly low dimension problem, the number of
variables being of the order of the number of boundary pixels. Theorem B of Geman
and Geman (1984) demonstrates the convergence of their simulated annealing method.
In its stated form, this theorem does not apply to our hybrid procedure whose iterative
steps combine a random choice of route with a deterministic choice of edges given that
route and currently fixed end points. Perhaps a sufficiently general result could be
proved but this would, presumably, still only apply for gentle cooling schedules.
However, we prefer to think of the annealing method simply as a convenient numerical
procedure which searches a little further afield than the ICM approach.

We have experimented with a variety of cooling schedules for our example using
the aggregated record at both the 32 by 32 and 64 by 64 grid levels. The best resuits
were obtained using a cooling schedule in which T decreased logarithmically from 3.5
to 0.5 over several hundred sweeps and linearly from 0.5 to zero over several hundred
more. We then continued to update using T=0 until convergence, which usually
required only a few sweeps. Although simulated annealing often produced a lower
penalty, the restoration produced was never visually superior to that obtained using the
local maximisation procedure,

Our conclusion is that the starting point provided by the cascade algorithm was
sufficiently good that the deterministic line fitting algorithm was very nearly optimal.

6. Concluding Remarks.

Combining the line fitting procedure with the cascade algorithm has produced a
fast and effective method for obtaining a high quality restoration from noisy data.
Further work is required to provide an automatic choice of suitable values of B, at
different grid levels and a criterion for terminating the cascade algorithm at the most
appropriate level of aggregation. Although we have considered only two-colour
images in this paper, it is clear that the basic ideas are more generally applicable: we
hope to continue work on the development of an aggregation and refinement algorithm
for grey level images.
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